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CHAPTER 1

TOPICS FOR INTRODUCTION

1-1. Introduction

The objective of Mathematics, Vol. 3 is to present

a broad overview of advanced mathematics includ-

ing number systems. Boolean algebra, calculus, and

differential equations. This training course is de-

signed to be used by both officers and enlisted men
in the U.S. Navy and Naval Reserve whose duties

and interests require a knowledge of this type of ad-

vanced mathematics.

The Navy is relying more heavily on mathematics

today to understand and solve its problems than ever

before in history. Navy computers are relied upon

to solve complex problems rapidly and accurately.

Operators and technicians must program and service

these computers. To qualify, they must have a

knowledge of the mathematics used by these com-

puters. These are divided into two general types;

digital computers operating on principles employing

Boolean algebra (far different from ordinary algebra),

and analog computers operating on principles em-

ploying calculus and differential equations.

To understand the material in Math, Vol. 3, the

material in Math, Vol. 1 and Math, Vol. 2 must

first be mastered. The first chapter in Math, Vol. 3

fists information, to be used as reference material,

that was presented in Math, Vol. 1 and Math, Vol. 2.

It also introduces a few new ideas that will be essen-

tial for grasping various sections of the text. It is

hoped that this varied program in the beginning

chapter will give the student a feel for the broad in-

formation that is at his fingertips and create in him

an interest to master it.

Chapter 2 on number systems is developed to

make the reader aware of other number systems and

shows the use of these systems as compared to the

familiar decimal number system in performing basic

operations. The ease of converting numbers ex-

pressed in one number system to their equivalents in

another number system is pointed out. An example

of computer appUcations is presented.

Since the concept of Boolean algebra is new to

many people, it was thought that many paths should

be provided to aid in grasping its ideas. Chapters 3

and 4 provide these paths by discussing the Venn

diagram, truth tables, and various diagrammatic

sketches. Applications and simpUfication tech-

niques are also presented.

Differentiation is then discussed in chapters 5 and

6. First, chapter 5 discusses the differentiation of

algebraic functions starting from the foundation pro-

vided in Math, Vol. 2. Chapter 6 emphasizes

differentiation of transcendental functions and their

apphcations.

After reading and understanding the material in

chapters 5 and 6 on differentiation, the student is

ready to understand integration and its apphcations.

Chapters 7 and 8 introduce integration and its appU-

cation mainly to electrical examples. Integration by

approximate methods is also investigated.

Series development is contained in chapter 9.

The abifity to represent a function by a series is

emphasized and examples are included.

The main idea of chapter 10 is to help the student

understand the usefulness of the differential equa-

tion in describing various simple physical systems.

Mechanized solutions for a few standard forms are

provided and a short discussion of analog methods is

included in the last chapter.

1-2. List of Useful Formulas for Ready Reference

1. Binomial Expansions

a. {a±b)^ = a^±2ab + b^

b. (a±6P = a3±3a=6 + 3a62±63

c. (a ±6)" = a":
1

n(n — 1) ,,,

n(n-l){n-2)
1 2-3 '

!«-363
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2. Polynomial Expansion

{a + b + c + d+ f = a^ + b^ + c''^(P

+ 2a(b + c

+ d+.

+ 2b{c + d
+ .

+ 2c(d+. .

1)

3. Factoring

a. a- + b'- ^ [a + bV^)(a — b^

b. a'-b^ = (a + b){a-b)

c. a^-b^ = (a-b){d- + ab + b'-)

d. a^ + b^= {a + b)(a^-ab + b-)

e. a*+ b'' = {a^ + abV2 + b^)(a^-ab\/2 + b^)

f. a2"-62» = (a" + 6")(a"-6")

g. a"-b" = {a-b)(a"-' + a"-^b+a"-^b^

+ +6"-')

h. a" -b" = {ci + b){a"-'- a"-^b + a"-^b'
- -b"-')

if n is even,

i. a" + b" = (a + 6){a"-' - a"-^^ + a-'-^i^

- + 6«-'

if n is odd

4. The Quadratic Equation

If

then

t^ + bx + c =

-b±Vb'^-4ac
2a

2c

— 6-1- Vi- — 4ac

Also, if

6^ — 4ac > Roots are real and unequal
= Roots are real and equal

< Roots are imaginary

5. Trigonometric Functions of an Angle (fig. 1-1)

y
a. sine (sin) d = -

z

h. cosine (cos) 6 = '-

z

c. tangent (tan) = -
X

d. cotangent (cot) d=—
y

e. secant (sec) = -
X

f. cosecant (esc) 6 = -
y
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8. Fundamental Relationships Among Trigono-

metric Functions

1

a. sin =
CSC d

b. cos 6 =

sec 6

1 sine
c. tan =

d. cot e=

f. esc d =

sin tf

g. sin2 + cos2 0=l
h. sec2(?-tan2 0=l
i. bsc2 0-cot2 0=l

cote



MATHEMATICS, VOLUME 3

Equations of straight lines

1. Ax +By+C =
-A

slope of line = -

B

intercept on Y 2ixis =-C
B

2. General equation (slope-intercept form)

y=mx + b where m = slope of hne and

6 = intercept on Y axis,

b. Equation of a circle

If the center of a circle is located at C(a, b)

and the radius of the circle is r, then the

equation for the circle is {x— a)- + (y— b)^ = r'^

16. Coordinate Transformations

When representing a point in reference to rec-

tangular coordinates we write P(x, y) as in figure 1-1.

But when representing the point in reference to

polar coordinates, we write P{z, 6) where z and 6

are shown on figure 1-1. By examining figure 1-1,

we see that:

a. x = z cos 6, and y=z sin d

y
b. z = VxH->^, and tan d = -

X

17. Theorems on Limits

Theorem 1

.

The hmit of an algebraic sum, of a product, or of a

quotient is equal, respectively, to the same algebraic

sum, product, or quotient of the respective limits,

provided, in the last named, that the hmit of the

denominator is not zero.

Theorem 2.

The hmit of any indicated real root of a function of

X is equal to the same real root of the hmit of that

function provided that the latter limit is positive.

hm Vu=wA (assume u=j{x))

Theorem 3.

The hmit of the sin or cosine of a function of x is

equal to the sine or cosine of the limit of that

function.

lim sin u = sin A

Theorem 4.

The hmit of the logarithm of a function of x is

the logarithm of the hmit of that function, provided

that limit is positive.

lim log u = log A

Theorem 5.

If two functions of x approach a common limit

and a third function oi x is never greater than one or

less than the other function for the same value oi x,

then the third function approaches the same limit as

the other two. (See chapter 5 for further

discussion.)

1-3. Inequalities

The mathematical expressions a < b (a is less

than b) and c> d (c is greater than d), when a, 6, c,

and d are real numbers, are called inequalities.

The first expression means that a — 6 is a negative

number and the second expression means that c — d

is a positive number. Two inequahties are said to

be LIKE IN SENSE if their symbols are pointing in

the same direction like a > b and c >d. If their

symbols are pointing in the opposite directions,

they are said to be DIFFERENT IN SENSE.

The inequality a S 6 is read "a is less than or

equal to 6" and the continued inequality a < b < c

means that a< b and b < c, and is read "a is less

than b which is less than c" or "6 lies between a

and c".

Following are three properties of inequalities.

1. Both sides of an inequahty may be increased

or decreased by the same number and not change

the sense of the inequahty.

5< 8

2 +2
7< 10

5<

3<'

2. Both sides of an inequality may be multiphed

or divided by the same positive number and not

change the sense of the inequahty.

2< 8

X2 X2
4< 16

2<
1 -

1<"

3. If both sides if an inequahty are multiplied or

divided by the same negative number, the sense of

the resulting inequality is reversed.

2<8

2(—1)<8(— 1) is not true for

shows a reverse in sense.

2 > — 8 which



Chapter 1- TOPICS FOR INTRODUCTION

1-4. Summation Notation

When given a series of numbers such as:

ai + fla + as + 04 . • . + a„+ . . .

partial sums are often desired. That is:

Si =a,

52 = ai + a2

53 = ci + 02 + a.i

Sn = ai + a2 + as . . + a„

We may also use a different notation to signify the

above partial sums. The n\.h partial sum (S„) may
be written as follows:

Sn=^ak

This may be read as "the partial sum Sn is equal to

the summation of all terms a, from the first term

where a* is equal to a\ and (A:=l) to the last term

where a*- is equal to an and (k = n)." The S""** partial

sum of the above series may thus be written as

follows:

S3 =^ a*

1-5. Combinations and Permutations

A group of elements without reference to the order

of the elements within the group is called a COMBI-

NATION. Therefore. ABC. ACB. BAC. BCA, CBA,

and CAB are made up of the same elements and are

thus the same combination. The group may con-

tain n different things (elements) and may be formed

into a number of combinations (C) by taking the n

different things r at a time.

Thus, the combinations formed by taking the ele-

ments within the group ABC two at a time are AB,

AC, and BC.

The formula for C(n, r) is as follows:

C{n,r} = -

-r)\

The notation n! is used to simplify the above ex-

pression and is called factorial n. Letting n be a

positive whole number, factorial n, given the symbol

nU is the product of all the whole numbers from 1 to

n including n. Thus,

= 1

= 2

= 6

= 24

= 120

When finding the total number of combinations

(Cr) of n things taken 1, 2, 3, 4, ,n at a time,

the following formula is used:

Cr=2"-1

Each different arrangement of all or some of the

elements within a group is called a PERMUTATION.

Thus tht' permutations of the letters ABC taken aU

at a time are: ABC. ACB, BAC, BCA, CAB, and CBA.

The number of permutations of n different things

taken all at a time is given by the following formula:

P{n.r=n) = n\

(r is equal to the number of things taken at one

time.) The number of permutations of n different

things taken r at a time is:

P{n.r)--
-r)\

Let us consider the number of permutations of the

letters in the word "SEE." Notice that "E" ap-

pears twice and there are three possible permuta-

tions. The number of permutations of n things

taken all at a time, when n, are alike, ^2 are alike,

etc., is given by the following formula:

r{n. nk) =—;—;—;

Example 1-1

.

Working shifts are to be formed from six men.

Each shift must consist of two men. How many

different shifts may be made?

C{n, r)

thus,

C(6,2) =

r\{n-r)l

= 6.r=2

6!

2!(6-2)!

= 15 different shifts

Example 1-2.

How many numbers consisting of four distinct

digits may be formed from the digits 0, 1, 2, 3, 4, 5, 6,

7, 8, 9?
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P(n,r) =
(n-r)l

following equation after simplifying the result of the

above procedure:

n= 10, and r= 4

= 5040 numbers

Example 1-3.

What is the number of permutations in the word

"REEF"?
,

r(n, nA) =—j—j—

:

niln2\n3'.

n = 4 letters in the word "REEF", and

fii = 2 for the letter "E". Thus,

4'
P(4,2) =

|i=12

Exercise 1-1.

A. How many different sums of money can be

made with a penny, a nickel, a dime, a quarter, a

half dollar, and a dollar?

B. If there are 24 ships in a convoy, how many

groups of three different ships may be formed?

C. If there were four ships in a screen, what is

the total number of possible collisions if the screen

axis is rotated 180°?

D. What is the number of permutations in the

word "missile".

1-6. Determinants

Let us consider the following simultaneous linear

equations:

aox + b2y=c-2

In order to solve for x multiply the first equation by

62 and the last equation by —61. Then add the two

equations to obtain the following equation:

(0162 — a2bi)x = {b2Ct — b]C2)

and then simplifying for x,

_ {b2Ci — 61C2)

(0162 — 0261)

We may find the solution for y by multiplying the

first equation by —02 and the last by a\ and then

adding the two equations. We then arrive at the

y= (aiC2 — Q2C1)

(0162 — 0261)

Note that the denominators are alike for both x

and y. The denominator may be represented by

the following symbol:

01 61

02 62

This symbol is called a DETERMINANT. The letters

Ol, 61, 02, 62 are called ELEMENTS and the numbers

Ol and 62 form the PRINCIPAL DIAGONAL. The

above determinant is considered a second-order

determinant for it is derived from two simultaneous

linear equations containing two unknowns. The

relationship which is represented by the deter-

minant is as follows:

ai 61

02 62

= 0162 — 0261 (1)

We now may write the solutions (x and y) of the

previous simultaneous equations as:
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Putting into the form of determinants we have:

+ 11

+ 24



CHAPTER 2

NUMBER SYSTEMS

2-1. Introduction

AU number systems are related to each other by

means of digits. These are symbols, in certain

positions, which represent a number. The place

occupied by these digits in a positional notation in

the number system determines how large or how

small the number is in value. Thus, the decimal

integers 692, 269, 926, and 629 all have different

values, but contain the same digits.

Some number systems do not contain all of the

same digits of another system. For example, com-

pare the familiar decimal system which contains

ten digits with the duodecimal system containing

twelve digits,

decimal -0, 1,2,3,4,5,6, 7,8,9

duodecimal-0, 1, 2, 3, 4, 5, 6, 7, 8, 9, t, e

(we shall employ the symbols t and e as digits to

denote ten and eleven of the decimal number

system)

The simplest system is the binary system which

uses only two digits, and 1. The digits in this sys-

tem can represent "on" or "off," "yes" or "no," and

even the decimal numbers such as 962, 538, and 714

using only the two digits in a meaningful sequence.

The decimal system will be used in this chapter

as a basis for discussion of the other number sys-

tems. It is used since most of our measurements

are based upon the decimal system and it is the most

common to our experience.

The number of different digits used in a number

system is called the base or RADIX. Thus, in the

binary system the radix is 2, in the ternary system

the radix is 3, and in the decimal system the radix

is 10.

2-2. Positional Value and Counting

Everyone has seen a car's mileage indicator.

This odometer can show some very basic rules that

are common to all number systems.

As your car moves along the highway, the odom-

eter is always moving in a cyclic action. Each digit

is advanced in a certain order. Thus, in the decimal

system, "advancing" the digit means replacing it

by the digit 1, advancing digit 1 means replacing it by

digit 2, advancing a 2 means replacing it by a 3, and

so on until the cyclic action begins to repeat itself.

At this time the digit at its adjacent left place is

advanced (fig. 2-lA, B, C, and D).

In figure 2-1, this cyclic action will continue

until the odometer represents the first integer it

began with, which is 0000. This means the whole

counting process will start to repeat itself at this

time. The reason for this action is that the indi-

cator has a hmit to how large a number it can indi-

cate. This number is 9999 and with an addition of

one or more advance, the odometer will read 0000

and start to repeat itself. The maximum amount of

different numbers the odometer can represent in

one cycle is called the MODULUS of the counter. In

our case, 10,000 is the modulus of our odometer.

Suppose we examine this odometer more closely

(fig. 2-lD). The value 6392 shown on the odometer

represents 6x10-' + 3x10^ + 9X10' + 2X10" which

equals 6392. Thus, it is seen that each digit has a

positional value. The positional value of digit 2 is

2X10", for digit 9 it is 9X10', for digit 3 it is 3x10^, and

for digit 6 it is 6x10^.

Example 2-1

.

What are the positional values of 001121.12 in the

ternary system (ordinarily written as 001121.12,i)?
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From the above example it is seen that the point

separates the column weights into two groups.

Negative exponents are always on the right of the

radix point (in the given example 2-1, ternary point)

and positive exponents are on the left.

2-3. Converting Between Number Systems

I. Radix r to Decimal

It has been shown that the positions of digits is

the determining factor in evaluating a number.

According to the positioning conventions, the num-

ber 429.13 in the decimal system equals as follows:

429.13,0 = 4(102) + 2(10') + 9(100) +1(10') + 3(10-2).

Similarly, for the ternary (base 3), octal (base 8)

and duodecimal (base 12) systems, respectively,

we have the examples:

Example 2-2.

A. 2O.OI3 =2(3') + 0(3») + 0(3-')+ 1(3-2)

= 6 + ^ = 6 + i = 6.11io

B. 036.128= 0(82) + 3(8') + 6(8") +l(8-')+2(8-2)

= 24 + 6 + ^^=30.156,0

C. 0e6.e<,2 = 0(122)+ll(12') + 6(12«)+ 11(12-')

+ 10(12-2)

= 132 + 6 + ^^=1^=138.986. . .,0

where t = ten and e = eleven.

Let a, b, c, .... be digits in any number

system with radix r. Then, the decimal value of

bjug.lm is equal to:

bjug.lnir = b{r^) +7(r2) + u(r') + gir"') + Kr"') + m(r-2).

Thus, to convert any given number in any system

to the decimal system merely expand the number
using the radix geometric progression and coUect

the terms. Of course the positive power (integral)

part is worked out separately from the negative

power (fractional) part and the two are then added
together, for ease in manipulations.

II. Decimal to Radix r

When converting a number such as 18.375,0 to a

number with any other radix r, the integral part to

the left of the decimal point must be treated sepa-

rately from the fractional part located on the right

of the decimal point.

There is a very handy conversion method that is

used to convert any decimal integer to any other

system. It is called converting by the division

process. It is done by dividing the decimal integer

by the new radix r and combining the remainders in

reverse order to produce the new number. (Ex-

ample shown after the next paragraph.)

In order to obtain the total conversion of a decimal

number, we must convert the decimal fraction.

This is done by a corresponding multiplication

process, that is, multiply the fraction by radix r and

take out the resulting integral parts in forward

order to obtain the new number. Add the two

parts, integral and fractional, to obtain the total

conversion. Following are examples to show and

familiarize the student with the preceding ex-

planations.

Example 2-3.

Convert the decimal number 18.375 to the binary,

ternary, and duodecimal systems.

A. Decimal to binary

208
2/9 ...remainder is

2/4 ...remainder is 1

2/2 ...remainder is

2/1 ...remainder is

...remainder is 1

read up

..18,0=1001

Fractional
read down

2 X.375 =0.75. ..integral part is 0.

2 X .75 =1.5 ...integral part is 1

2 X .5 =1.0 ...integral part is 1

2x0 =0.0 ...integral part is

375,0=. OII2

18.375,0 = IOOIO.OII2

B. Decimal to ternary

Integral

3/18

3/6 ...remainder is

3/2 ...remainder is

...remainder is 2

read up

r racttonal j j
read down

3 X.375 =1.125... integral part is 1

3 X. 125 = .375 ...integral part is

3 X .375= 1.125... integral part is 1

,18,0 = 200:, .-. .375,0=. 101010.

18.375,0 = 200.101010 .... 3

10
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C. Decimal to duodecimal
Integral
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The following examples will illustrate addition:

the addition of two binaries, and then the same ad-

dition in the decimal, octal, and duodecimal systems.

Example 2-4.
101 .OI2

1 100. IO2

5.2 5,0

1 2 . 5 0,0

5.28
14. 4b

5.5,2
1 7 . 4,2

10001 . 1 I2 17.75,0 21.68 20.9,2

For the binary system starting with the far right

column we have 1 + 0=1, so we put down 1 in the

first column, and also a 1 for the next two columns.

For the fourth column we have + = 0, thus we

put down in the fourth column. For the fifth

column, we have 1 + 1 = 10, so we put down for

the fifth column and carry a 1. For the sixth col-

umn, we have the carried over 1 + 1 = 10, thus we

put down for the sixth column and carry over 1

for the seventh column, giving the sum shown.

It should be noted that the radix points must be

vertically aligned just as in the famihar addition

of decimals.

The binary system is used in nearly all large

digital computers built to date. Most digital com-

puters do not add more than two numbers at a time.

When adding three or more numbers, the computer

adds the first two numbers and then takes their

sum and adds it to the third number, and so forth.

2-5. Subtraction

A. Direct Subtraction.

As in addition, it is important that the two num-

bers be vertically ahgned on the radix point. After

the numbers are properly ahgned, the operation of

addition or subtraction disregards the point. In a

digital computer, the addition or subtraction takes

place just as if all numbers were integers and in-

formation about the position of the point is kept on

record and supplied when called for by the operator.

It is more convenient to keep the point in each

number when using pencil and paper.

Direct subtraction in any number system is per-

formed in the same manner as in the decimal

system. The following examples will illustrate

subtraction.

Example 2-5.

1101
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The order (number of digits) of the subtrahend and

minuend must be equal before applying the comple-

ment process.

+ 4 2 9 minuend
+ 964 tens complement of subtrahend

1393
+ 3 9 3 remainder

B. Subtract 361 from 263.

+ 263
+ 639 (tens complement)

902 that is, -098 ans. (tens

complement of 902)

Just like the tens complements in the decimal

system, we have the two complements in the binary

system. The twos complement of an n-order binary

integer, k, is equal to 2" — A. Thus 1101 has 4

orders, and its twos complement is 2''— 1101 or

10000-1101=0011. By arithmetic, change each

digit in the subtrahend and then add 1 to the re-

sulting number. To subtract by twos complement,

the twos complement of the subtrahend is added

to the minuend. If there is an extra-column 1

in the sum, replace it by a " + "; otherwise find

the twos complement of the result of the addition

and prefix it with a " — ."

Example 2-7.

A. Subtract 110 from 11001 using the twos com-

plement method. Note the order (number of digits)

of the subtrahend and minuend must be equal before

applying the complement process.

+ 11001 minuend
+ 10 01 1 twos complement of subtrahend

101100 sum
+ 01100 remainder

B. Subtract 1101 from 1000.

+ 1000
+ 0011 (twos complement)

1011 that is, -0101

C. Subtraction by Complements (With End-

Around-Carry).

Consider any n-order decimal integer p. Its

nines complement is (10" — p)— 1 which is its tens

complement minus one. Thus, the nines comple-

ment of 32 is 67 since its tens complement is 68. By

arithmetic, subtract each digit in the decimal

integer from nine to obtain the nines complement.

In order to subtract by the nines complement, the

nines complement of the subtrahend is added to

the minuend. If there is an extra-column 1, re-

place it by " + " and then add 1 by the process

called "end-around-carry"; otherwise nines com-

plement the result at the addition and prefix " — ."

Example 2-8.

A. Subtract 32 from 475.

+ 475
+ 967
1442
+ 1c
443

(nines complement)

(end-around-carry to

units column)

B. Subtract 451 from 360.

+ 360
+ 5 48 (nines complement)

/ 908
^-*- — 9 1 (nines complement of addition)

Just like the nines complement in the decimal

system, we have the ones complement in the binary

system. The ones complement of n-order binary

integer k is equal to (2" — ^)— 1. By arithmetic,

change each digit in k to the other digit to obtain

the ones complement. This process is termed in-

version and is fundamental to computer operations

using ones complement. Thus, the ones comple-

ment of 10110 is 01001. In order to subtract by

the ones complement, the ones complement of the

subtrahend is added to the minuend. If there is an

extra-column 1, replace it by " + " and then add 1

by the process called "end-around-carry": other-

wise, ones complement the result of the addition

and prefix " — ."

Example 2-9.

A. Subtract 10110 from 11000.

f 1 1000
fO 1 1 (ones complement)

100001
> +

1

(end-around-carry)

010 to units column

B. Subtract 10110 from 10000.

C

698-990 0-64- 13
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+10000
+ 01 001 (ones complement)

1 1001
— 1 10 (ones complement of addition)

2-6. Multiplication

I. Direct

In a previous section of this chapter, we dis-

cussed digit-addition tables for number systems.

Likewise, each number system has a digit-

muhipUcation table. Students in the primary

grades memorize the decimal digit-multiplication

table. Following are the decimal, octal, duodeci-

mal, and binary multiplication tables (tables 2-5,

2-6, 2-7, and 2-8).

In multiplication in the decimal system, certain

rules are followed which use the decimal digit mul-

tiplication and decimal-digit addition tables. These

Table 2-5. — Decimal Multiplication. Table 2-6. — Octal Multiplication.

^
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rules are well known
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been performed. To illustrate, the following

example is given in the decimal system.

Example 2-13.

Divide 40320 by 126:

Accumulator
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Example 2-16.

A. Convert 21435 to radix 7.

Step (2) 105 = 57

Step (3)

( 2v It 4

X57 ^+ 1 3 >106
13./'

37)5

.+ 6 1

14

X57

106-

113

X5

601

6 047 =2 1435

Answer

B. Convert 2IIO3 to radix 8

Step (2) 103 = 38

Step (3)

( 28 Is

X3g X6,

68^ 7,

X3;

Is

+ 2 58

08)3

10 28

2 68

X38

10 28

Answer

= 2 1 1 O3

2 58>' 1028^

II. Division Method (for whole numbers only)

The division method in outline form is as follows:

Step (1) All arithmetic is performed in the origi-

nal number base.

Step (2) Express the desired or new base in terms

of the original system.

Step (3) Divide the original number and its suc-

cessive quotients by the number found in step (2)

and take the remainders in reverse order to produce

the new number. (Note: Remainder digits may
have to be converted to new base.)

Example 2-17.

A. Convert 21435 to radix 7.

Step (2) 107=125

132
Step (3) 1 25 /2T43

j_2

44
41

33
24

45 = 1st remainder = 47
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The second logical conclusion is the number of

carryovers and noting their place in reference to

the half add conclusion. The third logical con-

clusion is the final sum of the half add conclusion

and the carryover conclusion. The following ex-

ample will show these conclusions.

Example 2-18.

Add 3561,0 and 2148,o.

3561
+ 2148

augend

addend

5 6 09 half add (neglect carryovers)

+ 010- carryovers

5709 final sum (total)

When the addition of half add conclusion and

the carryover conclusion produces more carryovers

(lower level carryovers), the three conclusions are

repeated until a total final sum is produced. To

illustrate, the following examples are given.

Example 2-19.

Add 4965,0 and 5247,0.

4965
+ 5247
9102

+ 111-
0212

+1000-
10212

Example 2-20.

Add IOIIOI2 and IOOIII2.

augend

addend

half add

carryovers

half add

carryovers

final sum (total)

101101
+1001 11

001010
+100101-
1000000

+001010-
1010100

augend

addend

half add

carryovers

half add

carryovers

final sum (total)

18



CHAPTER 3

BOOLEAN ALGEBRA

3-1. Introduction

The father of Boolean algebra was George Boole

(1815-1864), who was an Enghsh logician and

mathematician. In the spring of 1847, he wrote a

pamphlet called Mathematical Analysis of Logic.

But later (18.54), Boole wrote a more mature state-

ment of his logical system in a much larger work

called. An Investigation of the Laws of Thought, in

which are founded the mathematical theories of

logic. He did not regard logic as a branch of mathe-

matics, but he did point out that a close analogy be-

tween the symbols of algebra and those symbols

which he devised to represent logical forms does

exist.

Boolean algebra lay almost dormant until its use-

ful appUcation to the new field of electronic com-

puters was discovered. Boolean algebra has now
become an important subject to be learn«d in order

to understand electronic computer circuits.

3-2. Classes and Elements.

In our universe we can logically think there are

two divisions; all things of interest in any dis-

course are in one division, and aU other things not

of interest are in the other division. These two

divisions are called, respectively, the universal class

(I), and the nuU class (O).

We now ask what makes up the universal class?

We know that the null class is made up of all things

not under discussion. But the universal class is

composed of all things, called elements, which are

of interest. These elements can be grouped to-

gether to form many combinations. In Boolean

logic, these combinations are called classes and
should not be confused with the null class or uni-

versal class. These classes are a part of the uni-

versal class. Each class is dependent upon its

elements and the possible states (stable, nonstable,

or both) the elements can be in.

Boolean algebra is that algebra which is based

on Boolean logic and concerned with all elements

having only two possible stable states and no un-

stable states.

To determine the number of classes or combina-

tions of elements in Boolean algebra, solve for the

numerical value of 2" where n equals the number
of elements which are sometimes called variables.

It should be noted that if there are no elements then

2" = 2"= 1. This means that when there are no ele-

ments there is one class, the null class. Also since

there are no elements, the universal class does not

exist.

3-3. Venn Diagram

The Venn diagram is a topographical picture of

logic, composed of the universal class divided into

classes depending on the n number of elements.

Let us consider all submarines and all underwater

sound sources that are not submarines. The Venn
diagram pictures this in figure 3-lA. These two

classes have no members in common, and there is no

underwater sound source which is not a member
of one of them. The combination of these two

classes comprises the total of the universal class.

Now, let us consider the universal class as con-

taining another class of aU atomic powered sound

sources. The Venn diagram of this logic is shown

in figure 3-lB. By examining this diagram we
see that there are four areas. Thus the universal

class is divided into four classes as foUows:

(1) Submarines and not atomic

(2) Submarines and atomic

(3) Atomic and not submarines

(4) Not submarines and not atomic

Figure 3-lC shows these classes separately as

shaded areas with x equaling submarines and y
equahng atomic powered sound sources. Using

X and y we have as follows:

19
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NOT SUBMARINES

SUBMARINES

A VENN DIAGRAM

SUBMARINES-

NOT SUBMARINES, NOT
ATOMIC POWERED

Figure 3-1 .—The Venn diasram.

(1) X and not y
(2) X and y
(3) y and not x

(4) not X and not y
These four classes are called minterms. They

are called minterms for they represent the four
minimum classes of elements. The opposite of

minterms is maxterms. These classes are repre-

sented in figure 3-lD and are written as follows:

(1) y or not x

(2) not X or not y
(3) X or not y
(4) x or y
They are called maxterms for they represent the

20
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four maximum classes of elements. For ex-

planation, (4) X or y, contains all elements except

those being both, not submarines and not atomic.

In succeeding sections, we wiU discuss minterms

and maxterms in more detail.

3-4. Basic Expressions

In the previous section, the Venn diagram was

shown to represent a picture of logic. The logic

shown was written in longhand, and used the im-

portant words "and," "or," and "not." These

words form the basis for combining classes in

Boolean algebra logic description. The symbols

for these words are "•," "+," and "t" respec-

tively. The following is an example of this notation.

Example 3-1.

a-b reads a and b

a + b reads a ox b

a reads not a

Thus, in figure 3-lC we can write the four classes

as:

(1) x-y or x(y)

(2) x-y or x{y)

(3) yx or y{x)

(4) x-y or x(y)

In figure 3-lD the four classes may be written in

Boolean algebra notation as follows:

(1) y+7
(2) x+\y

(3) x+ y
(4) x + y

It should be noted that the complement of x is

equal to x. The complement of y is equal to y.

The complement of a minterm is a maxterm. Their

logical sum describes the universal class containing

all elements.

3-5. Application to Switching Circuits

Due to the fact that Boolean algebra is based

upon elements having two possible stable states,

it becomes very useful in representing switching

circuits. The reason for this is that a switching

circuit can be in only one of two possible stable

states. That is, the state of being open or the state

of being closed. These two states may be and 1,

respectively (fig. 3-2).

SWITCH OPEN
\ VALUE =

\v
SWITCH CLOSED
VALUE = I

o"o"

Figure 3-2.—Switch value representation.

Since the binary number system (chap. 2) consists

of only the symbols and 1, we employ these sym-

bols in Boolean algebra and call this binary Boolean

algebra. This chapter and the next will be based

on the discussion of binary Boolean algebra and its

switching circuit applications.

3-6. The AND Operation

Let us consider the Venn diagram in figure 3-3A.

Its classes are labeled using the basic expressions

of Boolean algebra. Note there are two elements,

or variables, A and B. The shaded area represents

the class of elements that are AB in Boolean nota-

tion and is expressed by Boolean algebra as:

j\A,B) = AB.

This expression is called an AND operation be-

cause it represents one of the four minterms dis-

cussed in section 3-3. AND indicates class

intersection and both A and B must be considered

together.

We can conclude then that a minterm of n vari-

ables is a logical product (the use of the symbol

of pure algebraic multiphcation to represent the

AND operation) of these n variables with each

variable present in either its noncomplemented or

its complement form, and is considered an AND
operation. Two variables have four minterms, AB,

AB, AB, and AB.

In this algebra, any group of variables, which

represents an expression of logic, is caOed a function

and is symbolized /. For any Boolean function

there is a corresponding truth table which shows,

in tabular form, the true condition of the function

for each way in which conditions can be assigned

to its variables. In binary Boolean algebra, and

1 are the symbols assigned to the variables of any

function. See figure 3-3B for the AND operation

21
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A VENN DIAGRAM
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merits that are A + B in Boolean notation and is ex-

pressed by Boolean algebra as:

f{A,B) = A + B.

This expression is called an OR operation for it

represents one of the four maxterms discussed in

section 3-3.

We can conclude then that a maxterm of n vari-

ables is a logical sum (the use of the symbol of

pure algebraic addition to represent the OR opera-

tion) of these n variables where each variable is

present in either its non-complemented or its com-

plemented form. Two variables have four max-

terms, A+B,A + B,A + B, and A+ B.

In figure 3-4B the truth table of an OR operation

is shown. The examples" truth table can be seen

to be true if one thinks of the logic involved. A + 8
is equal to A OR B which is the function f(A, B).

Thus if /i or B takes the value of 1, then j[A, B)

must equal 1. If not, then the function equals zero.

By means of switching circuits, if two or more
switches are placed in parallel, the resuh is known
as an OR circuit. Inspection of the arrangement in

figure 3-4C shows that the resulting circuit will

transmit if either ^ or fi is in the closed position,

i.e., equal to 1. If, and only if, both A and B are

open, i.e., equal to 0, then the gate will not transmit.

This representation (fig. 3-4C) is the switching cir-

cuit for an OR operation which is sometimes
referred to as an OR gate.

The logic diagram for the OR operation is given in

figure 3-4D. This means that there are two inputs,

A and B, into an OR operation circuit producing the

function in Boolean form oi A + B. Note that the

diagram differs in shape from the logic diagram of an

AND operation circuit as in figure 3-3D.

Let us now consider the expression f(A, B)
= AB + AB which reads "^ AND NOT B OR NOT A
AND B" which can be expressed as ""A or B but not

both." This OR expression differs from the OR

A VENN DIAGRAM

f(A,Bj = AtB
A
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expression/^, B) =A+B. fiA. B} =AB + AB is

called an "exclusive 0/?" expression, while /M, B)

= A + B is called an "inclusive OR" expression.

Their difference can best be explained by the follow-

ing illustration.

The concepts AND, OR, and NOT (complement)

are famihar ones, used by all of us in expressing

ideas. We tell the waitress we would Uke some ice

cream AND cake, OR some strawberries AND
whipped cream. The OR may be either exclusive or

inclusive, depending upon how hungry we are.

Thus, we can see that the inclusive OR circuit (fig.

3-4C) can have either switch A closed, switch B

closed, or both closed to transmit. As to an ex-

clusive OR expression, the switching circuit is as

shown in figure 3-5. Switch A or B may be closed,

but not both, for the circuit to transmit.
Figure 3-5.—The exclusive OR switchins circuit.

A VENN DIAGRAM

fr/ij =A

A
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3-8. The NOT Operation

We now refer to the Venn diagram in figure 3-6A.

The shaded area represents the complement of A
which is noted in Boolean algebra as A and read

''NOT A." The expression y?^) = /I is called a MOT
operation.

In figure 3-6B the truth table of a NOT operation is

shown. It is explained by understanding the NOT
operation circuit. The requirements of a NOT
circuit are that a signal injected at the input produce

the complement of the signal at the output, and

furthermore that the complement of the signal at the

input produce the signal at the output. Thus, in

figure 3-6C it can be seen that when switch A is

closed, i.e., equal to 1, the relay opens the circuit to

the load. When switch A is open, i.e., equal to 0,

the relay completes a closed circuit to the load.

The logic diagram for the NOT operation is given

in figure 3-6D. This means that A is the input to a

NOT operation circuit, called an inverter (used to

perform the inversion process discussed in chapter

2-5, example 2-8), and gives an output of A.

3-9. The NOR Operation

Figure 3-7A shows the Venn diagram for a NOR
operation. The shaded area represents the quan-

tity, A OR B, negated and is a minterm expression,

as shown in figure 3-lC (4). Notice that A+B is

equal to the minterm expression AB for their Venn
diagrams are identical. This relationship is an

application of DeMorgan's Theorem which is de-

scribed in section 4r-2 of chapter 4 of this training

course. This minterm is discussed in section 3-3

of this chapter.

A VENN DIAGRAM

fC/i,6j = A+B

A
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The truth table for the NOR operation is given in

figure 3-7B. The table shows that if either^ orB is

equal to 1, then /{A. B) is equal to 0. Furthermore,

if ^ and B equal 0, then /(/I, B) equcds 1.

The NOR operation is a combination of the OR
operation and the NOT operation. The NOR
switching circuit (fig. 3—7C) is the OR circuit put in

series with the NOT circuit. If either switch A,

switch B, or both are in the closed position, i.e.,

equal to 1, then there is no transmission to the load.

If switches A and B are open, i.e., equal to 0, then

current is transmitted to the load.

The logic diagram mechanization of fiA, B)

=A+B (NOR operation) is shown in figure 3-7D.

It uses both the OR logic diagram and the inverter

(NOT operation) logic diagram. The NOR logic

diagram mechanization shows that there are two

inputs, A and B. into an OR circuit producing the

function in Boolean form ofA+ B. This function is

the input into the inverter which gives the output, in

Boolean form, oi A + B. Note that the whole quan-

tity oi A+B is complemented and not the separate

variables.

3-10. The NAND Operation

The NAND operation has a Venn diagram which is

shown in figure 3—8A. The shaded area represents

A AND B, the quantity negated (NOT), and is a

maxterm expression, as shown in figure 3-lD(2).

Notice that AB is equal to the maxterm expression
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A + B for their Venn diagrams are identical,

maxterm is discussed in section 3-3.

Thi

The truth table is shown for the NAND operation

in figure 3-8B. When A and B equal 1, then

f(A, B) is equal to 0. In all other cases, the function

is equal to 1.

The NAND operation is a combination of l\ie AND
operation and the NOT operation. The NAND
switching circuit (fig. 3-8C) is the AND circuit put

in series with the NOT circuit. If either switch A or

B is open, i.e., equal to 0, then current is transmitted

to the load. If both switch A and B are closed, i.e.,

equal to 1, then there is no transmission to the load.

The logic diagram mechanization of J\A, B)

=AB (NAND operation) is shown in figure 3—8D.

The AND operation logic diagram and the NOT
operation logic diagram are both used. The NAND
logic diagram mechanization shows that there are

two inputs, A and B, into an AND circuit producing

the function in Boolean form of AB. This function

is the input into the NOT circuit which gives the

output, in Boolean form, of AB. Note that the

.whole quantity of AB is complemented and not the

separate variables.

3-11. Fundamental Laws and Axiomatic Expressions

of Boolean Algebra

This section will give basic laws of. Boolean

algebra which will enable the student to simplify

many Boolean expressions. These laws should be

memorized so that they can easily be recalled and

used as a tool for simplification.

The following is a list of these important laws.

Figure 3-9 shows the switching circuit diagrams,

truth tables, and logic diagram mechanizations of

these laws.

I. Law of Identity

A=A
II. Law of Complementarity

1. AA =

2. A+A = \

III. Idempotent Law
1. AA=A
2. A+A=A

IV. Commutative Law
1. AB = BA
2. A+B = B + A

VI.

VII.

Associative Law
1. {AB)C = A(BQ
2. (A + B) + C = A + (B + C)

Distributive Law
1. A{B + C) = [AB) + (AC)

2. A + (BC) = (A + B)(A + C)

Law of Dualization (DeMorgan's Theorem)

1. {A+B) = AB

2. {AB) = A + B
VIII. Law of Double Negation

A=A
IX. Law of Absorption

1. A{A + B) = A
2. A + (AB)= A

We shall now simplify the Boolean function

f{A, B, C, D) =AC +AD + BC + BD using three of

the previously stated laws.

f{A,B,C,D)= AC +AD + BC + BD
= CA + CB+ DA + DBby

Commutative Law
= (CA + CB) + {DA + DB) by

Associative Law
= {C(A+B)\ + [D(A+B)]hy

Distributive Law
/M,fi,C,D) =M + fi)(C + D)*by

Distributive Law

*NoTE: In the above step, by substituting K ioT A + B vie get
K{C + D). Then using the Distributive Law we get KC + KD.
Substitute A + B ioT K and we have C{A + B] + D{A + B) which
gives us the step before the simphfied expression /(,4. B, C, D)
= iA + B){C+ B).

Figure 3—10 shows axiomatic expressions and

their logic diagrams, truth tables, and switching

circuits. Note that the indicates an open circuit

and the 1 indicates a closed circuit. The following

are the axiomatic expressions.

1. A + = A
2. A = (The variable A may
3. .4 + 1 = 1 be 1 or 0.)

4. A\=A

3-12. MInterm-Maxterm Conversion

Any Boolean function may be expressed in either

minterm form or maxterm form. The key to the

above statement is the truth table. With the truth

table of any function of n-variables, one may ex-

press this function in minterm or maxterm form.
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A = A

A A

I LAW OF IDENTITY

®
A A =

®
A+ A = 1

A
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®

"O'o 'O'n.

A + B = B +A

A
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A(B + C) = (AB) +(AC)

A(B+C)

A
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© (A + B) = A B

:C>^^Mi>^
i^^z
'1 cr o '

I—D-V ^^^
AA/V

A
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A = A

AAA
1

1 1

VTTT LAW OF DOUBLE NEGATION

(T) A(A + B) =
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©
::0

A + 0=1

A
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In order to obtain the minterm expression of

f{A, B, Q OR all /'s and AND their corresponding

minterms. Thus we arrive at the following:

M, B, C)=fo[ABC)+fMBC)

+MABC)+fMBC)

+MABC)+MABC)

+UABC)+MABC)
By substitution we get,

M, B, C) = 0{ABC+ 1{ABC)

+ 0{ABC + 0(ABC)

+ 0{ABC+l(ABC)

+ 0{ABC + l{ABQ,

by use of the axiomatic expressions (fig. 3-10) we
obtain,

M^ B- C)=ABC + ABC + ABC

which is the minterm expression of J{A, B, C). In

order to check this expression, make the truth

table of the expression and see if it corresponds to

the given truth table.

Now, in order to obtain the maxterm expression

of f(A, B, O AND all/'s and OR their corresponding

complemented minterms. Thus, we arrive at the

following:

f(A, B, C) = L/o + (ABC) \ [/, + (ABQ \

1
x[f., + (ABC)\[h + (ABQ\

y.[f, + {ABC)\[f^ + {A'BC)\

y-[f^ + (ABC)\[f, + (ABC)\

By substitution and use of the Law of Dualization

(DeMorgan's Theorem) we get,

/(/t,B,C) = [0+M+B + C)]

x[l + (^ + B + C)]

X [0 + (/i + fi + O]

x[0 + (^ + B + C)]

x[0+(I+B + C)]

x[l+(^+B + CJ]

x[0+M + B + C)]

x[l + (I+B + C)]

By use of the axiomatic expressions we arrive at:

f(A,B,C) = (A + B + C){A + B + C)

x(A + B + C)(A + B-^Q

X(A + B + C)

which is the maxterm expression oi JfA, B, C). In

order to check this expression, make the truth table

of the expression and see if it corresponds to the

given truth table.
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3-13. The Veitch Diagram

In previous sections we have discussed various

ways to represent Boolean functions. These were,

as a minterm, maxterm, truth table, Venn diagram,

switching circuit, and a logic diagram mechaniza-

tion. Another form of function representation is

the Veitch diagram. This section will discuss the

construction of the Veitch diagram.

Veitch diagrams provide a very quick and easy

way for finding the simplest logical equation needed

to express a given function. This will be discussed

in detail in the next chapter.

Veitch diagrams for two, three, four, five or more
variables are readily constructed. Any number of

variables may be plotted on a Veitch diagram,

though the diagrams are difficult to use when more

12
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than four variables are involved. The Veitch dia-

grams for two through four variables are illustrated

in figure 3—11.

Since each variable has two possible states (0 and

1), the number of squares needed is the number of

possible states (two) raised to a power dictated by

the number of variables. Thus, for four variables

the Veitch diagram must contain 2* or 16 squares.

Five variables require 2^ or 32 squares. An eight-

variable Veitch diagram needs 2* or 256 squares —

a

rather unwieldy diagram. If it becomes necessary

to simphfy logical equations containing more than

six variables, other methods of simplification are

available and will be discussed in the next chapter.

An exploded view of a four-variable Veitch dia-

gram is shown in figure 3-12. Notice the division

marks which divide the diagram into labeled col-

umns and rows. The location of each square repre-

sents the combination of the variables labehng each

row and column.

To illustrate the plotting of the Veitch diagram,

the Boolean equation



CHAPTER 4

SIMPLIFICATION TECHNIQUES AND APPLICATIONS

4-1. Introduction

A logical designer may arrive at his Boolean func-

tion by means of the minterm or maxterm expression

derived from a truth table. This form may often be

simplified. By simplified, we mean that another

expression may be arrived at that will represent the

same function but may be constructed with less

equipment. For example, the designer may arrive

at the function f(A,B,0 =AB + BC + BC + AB.

This function can be simpUfied to give

f(A, B, C) =AB + BC +AC

which may be easier to construct.

When describing Boolean functions it is often

necessary to identify them as to their ORDER. The

order is defined, for example, so that the cost of the

logic circuit may be determined without construct-

ing the circuit. Higher order expressions cost more

to construct.

To determine the order of a Boolean expression,

one must first inspect the quantity within the paren-

theses. If this quantity contains only an AND opera-

tion(s), or only an OR operation(s), this quantity is

first-order. If the quantity contains both an AND
and an OR operation(s), it is considered a second-

order quantity.

The next step is to consider the relationship of

the quantity within the parentheses and the other

variables within the brackets of the expression.

Again, if the parenthesized quantity is combined

with the other bracketed variables with either an

AND operation(s) or an OR operation(s), the order is

increased accordingly. This process is continued

until the final order of the expression is obtained.

The following examples will show the student the

order-determining process.

Example 4-1.

Find the order of the Boolean expression

f{A,B,C,D,E,F,G)=[(AB + C)D + E]F+ G.

(1) Consider the parenthesized quantity {AB + C).

a. Does it contain AND operation(s)?

Ans. Yes!

b. Does it contain OR operation(s)?

Ans. Yes!

c. Conclusion: 2nd-order quantity.

(2) Consider the bracketed quantity

[(AB + C)D + E].

a. Is the parenthesized quantity combined

with the other variables with AND
operation(s)?

Ans. Yes!

b. Combined with OR operation(s)?

Ans. Yes!

c. Conclusion: Increase order of parenthe-

sized quantity by 2 which yields a 4th-

order bracketed quantity.

(3) Consider the braced quantity

{[(AB + C)D + E]F + G}.

a. Is the bracketed quantity combined with

the other variables with AND operation(s)?

Ans. Yes!

b. Combined with OR operation(s)?

Ans. Yes!

c. Conclusion: Increase order of bracketed

quantity by 2 which yields a 6th-order,

braced, final quantity.

Thus f=[(AB + C)D + E]F + G is a 6th-order

Boolean expression. Note that the number of

variables has no relationship to the order of a

Boolean expression.

Example 4-2

Find the order of the Boolean function

f(A, B, C, D, E,F,G)= [{AB)(CD+ fF) + G]

.
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We will proceed to the solution with limited dis-

cussion.

(1) Consider (CD + EF). (Note: Start process

with the highest order parenthesized quantity.)

a. AND operation(s)?

Ans. Yes!

b. OR operation(s)?

Ans. Yes!

c. Conclusion: 2nd-order.

(2) Consider [{AB){CD + EF) + G].

a. AND operation(s)?

Ans. Yes!

{(AB) (CD + EF) is an AND operation.)

b. OR operation(s)?

Ans. Yes!

c. Conclusion: Increase 2nd-order parenthe-

sized quantity by 2 which yields a 4th-

order, bracketed, final quantity.

Thus f=[{AB)tCD + EF) + G] is a fourth-order

Boolean expression.

In this chapter, we will concentrate for the most

part on first- and second-order expressions. As yet,

no one has been able to devise a simphfication

procedure for any order Boolean expression.

Certain procedures work best with certain order ex-

pressions, and first- and second-order expressions

are the most common.

4-2. Application of Previously Learned Basic Laws

and Axiomatic Expressions

The first process of simplification to be dis-

cussed requires the student to employ ingenuity,

judgment, and experience to simplify an expression

by applying appropriate laws and axiomatic ex-

pressions of Boolean algebra. For example, the

left-hand side of the following expressions requires

more elements of construction than the right-hand

side. Therefore, if the left-hand side appears in

some function, a simplification may be arrived at

if it is replaced by the right-hand side.

1. AA =
2. AA=A
.3. A+A = l

4. A+A=A
5. ^ + 1 = 1

6. Al=A
7. A + = A
8. A0 =
9. A+AB-=A

10. A+AB =A+B
11. A{A + B) = A
12. A{A + B) = AB
13. (A + B){A + C) = A + BC
14. AB + A_C=A{B + C)

15. AC +AB + BC = {A + B){A + C)- -AC +AB

The application of these expressions may not be

obvious. It is usually necessary to rearrange, and

even modify, the original function before any of the

above expressions can be used. For example, it

might be helpful to "OR" XX (axiomatic term

equal to 0) to the original function, or to "AND" it

by (X + X), (axiomatic term equal to 1) if an X can

be chosen which eventually can be eliminated.

Also, DeMorgan's Theorem may be a useful tool

in simplifying. DeMorgan's Theorem is stated as

follows:

To negate a Boolean expression:

1. Interchange ORs for ANDs and ^A'Ds for

ORs observing all parentheses or brackets

present and imphed.

2. Negate each variable of the new expression.

For example: ^\enf={A + B)D then

f=(A + B)D = AD + BD=(A + D){B + D) = AB + D

or given f=A + B then f=A + B = AB

or given /= .46 then f=AB=^A + B

Following are some examples to illustrate the use

of previously learned basic laws and axiomatic

expressions in simphfying Boolean functions.

Example 4-3.

Simphfy f=AB + D + ADC + BDC

Applying #14 to the last two terms, we have:

f=AB + D + {DC){A + B)

Applying #10 to the last two terms by substitution

of D + C for D + DC we find:

f=A'B + D + C{A+B)

Using DeMorgan's theorem on the last term we
find: _^

f=AB + D+C{A + B)

f=AB + D + C{AB)
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Applying #10 again by substituting AB + C for

AB + {C)(AB) we finally arrive at:

f=AB + D + C

Example 4-4. _
Simplify f=AB + C + ABC + ABC

Applying #14 to the last two terms we have:

f=AB + C + C(AB + AB).

Then applying #10 to the last two terms by sub-

stituting C of the example for /i of #10 and (AB+ AB)

of the example for B of #10 we find:

f=AB + C + AB + AB

Using #4 by substituting AB of the example for

A in #4 and noting any number of terms may be

added if the term is already present in the original

equation; we can substitute AB + AB for AB in the

example as follows:

f=AB + AB + AB + AB + C

Again we use #14 by factoring B from the first

two terms and A from the third and fourth term to

give: _ _ _
f=B{A+A) + A{B + B) + C

Finally, using #3, substituting 1 for both {A + A)

and (B + B), we find the simpfified form:

f=B+A+C
Example 4-5._ _
Simpliiyf=AB + BC + BC + AB

There is no obvious simplification of this expres-

sion. But, if the last two terms are logically multi-

plied {AND operation) by {A+A) and iC + C), re-

spectively, the resulting terms may be simplified as

follows: According to rule #3 logically multiply the

last two terms by the equivalent of 1,

/= AB + BC + BCiA + A) + AB(C + C)

Logically multiply the last two terms by their re-

spective common factors according to #14.

f=AB + BC +ABC +ABC +ABC +ABC

Rearranging the order of terms,

/= AB + ABC + BC + ABC + ABC + ABC.

Using #14 again, combine term pairs having com-

mon factors,

/= AB(\ + C) + BC( \+A) + AC{B + B).

Finally, by applying #15, to the first two terms and

#3 to the last term we find the simplified form:

f=AB + BC +AC

Note that in the previous examples, the final ex-

pression is simpler than the original. For a begin-

ning student in Boolean algebra, the above use of

basic laws and axiomatic expressions to simplify

a Boolean function may seem difficult and tedious.

But to an expert in Boolean algebra the simplifica-

tions are fairly obvious.

4-3. Veitch Diagrams

We shall now review the plotting procedures to

construct a Veitch diagram. The number of vari-

ables in a given Boolean function determines the

number of squares in a Veitch diagram. The num-

ber of squares needed is the number of possible

states (two) raised to a power dictated by the num-

ber of variables. Thus, for two variables the Veitch

diagram must contain 2^ or 4 squares. Three vari-

ables require 2^ or 8 squares (chap. 3, fig. 3-11).

To plot the logical function on the Veitch diagram,

place a "1" in each square representative of the

term. (Chap. 3, fig. 3-13.)

Figure 4-1 shows the Veitch diagram oif=ABC
+ABD+AC+ABCD + AC. We will use this ex-

pression in discussing the use of the Veitch diagram

in simplification.
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To obtain the simplified logical equation from a

Veitcli diagram of four variables, observe the follow-

ing rules: (Fig. 4^2.)

a. If I's are located in adjacent squares or at

opposite ends of any row or column, one of the

variables may be dropped. Note that those

variables that remain must not yield a Boolean

product of zero.

b. If any row or column of squares, any block of

four squares, or the four end squares of any

adjacent rows or columns, or the four corner

squares are filled with I's two of the variables

may be dropped.

c. If any two adjacent rows or columns, the top

and bottom rows, or the right and left columns

are completely filled with I's, three variables

may be dropped.

d. To reduce the original equation to its simplest

form, sufficient simplification must be made
until all I's have been included in the final

equation. I's may be used more than once,

and the largest possible combinations of I's

in groups of 8, 4, or 2 should be used.

To proceed \vith the simpUfication of f=ABC
+ABD +AC + ABCD + AC:

1. Squares 12, 13, 9, and 8 may be combined

using rule (b) to yield AC.

2. Squares 6, 7, 3, and 2 may be combined using

rule (b) to yield AC.
3. Squares 12, 14, 13, and 15 may be combined

using rule (b) to yield AB.

4. Squares and_2 may be combined using rule

(a) to yield ABD.
To keep track of the squares combined, draw

loops around the combined squares. Doing this,

the Veitch diagram is modified as in figures 4^3.

All I's have been used at least once therefore, the

Boolean expression can now be written in its

simplest form as

/=AB + AC+ AC + ABD.

A Veitch diagram provides a convenient way for

finding the complement of a logical expression.

This is done by plotting the original equation on a

Veitch diagram, and then plotting on another Veitch

diagram an expression which has "ones" every-

where the original expression does not have "ones."

An example wiU illustrate the procedure.

Example 4-6.

If / = ABC what is /? /= ABC = A + B + C
(DeMorgan's theorem). A three-variable Veitch

diagram should give the same answer. The original

expression is first plotted as figure 4^.

8
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squares 6, 4, 2, and combine to form C. There-

fore, the expression for /is,

J=A + B + C

which agrees with the resuh obtained by directly

complementing the original expression.

4-4. Application of Chapters 2, 3, and 4

We shaU now use information from chapters 2 and

3, and tliis chapter to present an application of

Boolean algebra and number systems to certain

aspects of a digital computer design (specifically an

adder and a subtracter logic diagram mechanization).

The first step is to identify the problem and select

a known solution. Take a sample problem and find

the solution. Look back and see what processes

(addition, multiplication, subtraction, division) were

used to obtain the solution. Compare these human

processes with those of a machine.

In our world of numbers, we have both positive

and negative numbers. It would be beneficial if

our machine could represent plus (+) and minus (—

)

quantities. To do this we will use the SIGN BIT

NOTATION.

Sign bit notation employing the binary number

system uses 1 to represent a minus number and to

represent a plus number. If a number is negative

each digit must be ones complemented (ch. 2, sec.

2-5, C) and the sign bit is added in the proper

column(s). The following example will help the

student to understand sign bit notation.

Example 4-7.

Represent — 4io, and — 2io in binary sign bit

notation.

A. -4,o = -1002

-1002=101 1

-"This one is a result of one's

complementing.
*- This one is a result of one's

complementing.
-*" This zero is a result of one's

complementing.

--This one equals minus

using sign bit notation in

sign bit column.

B. —2io =— 000102 (employing a six bit register

with the minus sign included

as one bit)

-000 102=llll_0l2

11—_—-one's complement

^sign bit

.-. — 2io = 1 1 1 1 I2 using sign bit notation which

requires one's complementing when employing a

six bit register.

Such a system of notation demands end-around-

carry (chap. 2, Sec. 2—5,C) or end-around-borrow

(to be explained) when performing either additive or

subtractive processes.

A digital computer has to use either an additive or

a subtractive process. Most computers use a sub-

tractive process because it has an inability to get a

negative zero (described later). Following are ex-

amples to show the student both the additive and

subtractive processes used in digjtcd computers.

Example 4-8.

A. Additive A + B (using sign bit, end-around-

carry)

^=-21,o,B =+ 5,o

The number of bits (digit columns in the number)

required is equal to one for the sign bit plus the

number of bits required to represent 21 in the binary

equivalent (because 21 is the larger absolute

number).

-21,o =-1010l2=101010

and +5,0 =+001012 = 000101

then ^ = 101010
+

B=000101

HA = IQ\\\\ (half add)

Cfi = 00000- (carry)

.
— 4io=101l2 using sign bit notation

employs one's complementing.

i^hich

SUM =10 1111 (This equals sum
for there were no

carries to be con-

sidered for the

HA and CR
operation)

101111 =-100002 =- 16,0
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B. Additive A + B (using sign bit, end-around-

carry)

A = -8. B = -15
-15,o = -l 1 1 12=101 1 1

(one's cumplement)

01000=10111=23,0

and tiie final answer is

(This determines the number of bits because it

has the larger absolute value.)

-8,0 =- 100002 = 10111

.: A= 10 111
+

B= 10000

HA= 111
CR= 10000 -

HA= ©0 0111

EAC= ^ »1 (end-around-carry)

HA= 110

CR= 0001-
HA= 00100

CR= 00 1
—

HA= 00000

CR= 01

HA= 10

CR=
SUM= 01000 = + !

Z 0,0.

Example 4-9

A. Subtractive A-B (using sign bit notation, end-

around-borrow).

In example 4^8 we used the additive process of

"half-add" and "carry" operations. But in the

process of subtraction, the operations of "half-

subtract" and "borrow" are utilized.

The computer technique of subtraction includes

the operations of half-subtract, borrow, and final

difference. The first logical conclusion in sub-

traction is the examination of the minuend and the

subtrahend to determine the half-subtract operation.

The half-subtract operation consists first of the

subtraction of the numbers: neglecting to record

the digit change in the minuend due to borrowing.

The second logical conclusion is determining the

number of borrows and noting their place in refer-

ence to the half-subtract conclusion. The third

logical conclusion is finding the final difference as

a result of the half-subtract and the borrow con-

clusions.

^=-2 1,0 B = +5,o

-21,o =-1010l2=101010

But this is incorrect! The problem used two

numbers, which when added produced a sum that

exceeded the modulus of the register (needed a

larger bit register). How could a computer know?

By checking the two sign bits of the original num-

bers to be added. If they are both zeros then the

final result should be a positive number. If they

are both one's then the final result should be nega-

tive. In the above case the final sum is known to

be in error because

(ll two negative numbers were added,

(2) the result was a positive number.

The sum would then be one's complemented by the

computer and the absolute value without the sign

could be read with the negative sign indicated at

some designated place on the read-out device.

.". in our case,

(using sign bit notation which requires one's com-

plementing: the larger absolute value {A=— 2lio)

determines the number of bits).

+ 5 = +10l2 = 000101
.-.^ = 101010

fl=000101
//S=101 1 1 1

B/? = 1 1
-

(half-subtract)

(borrows)

//S = 1 1 1 (half-subtract)

B/? = 0000— (borrows)

DIF=100 1 1 (difference, for there were no

borrows to be considered for the

preceding HS and BR operation)

.-. 100101 =-11010. = -26,0

B. Subtractive A — B
(using sign bit notation, end-around-borrow).
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In the additive operation, when there arose an

extra column digit in a carry operation past the

sign bit column, we used the process of "end-

around-carry." In the subtractive operation, if an

extra digit appears in the column to the left of the

sign bit column, we "end-around-borrow" {EAB) it

to the units column in its own separate process.

The following problem will illustrate this process of

"end-around-borrow."

^=-5 B=-2
yl=-5io=- 1012 = 1010

(using sign bit notation)

g= -2io = -10=1101
A= 1010

B= 1101

HS= 0111

BR= 101-

HS= 1101

BR = 100—

HS= qjlOl

EAB = ^-^1 (End-around-borrow)

HS= noo
BR = 0000

DIF= 1100

11002 =-011=-3,

Now to exemphfy the advantage of the subtrac-

tive process over the additive process, we wiU work

a sample problem and obtain the negative zero.

Example 4-10.

By the additive process, add — 7 and + 7 using

end-around-carry, and sign bit notion.

-7io = - 1112= 1000

-t-7,o = +lll2 = 0111

(using sign bit notation)

^ = 0111

+
B=1000

HA=\\U
C« = 0000

Notice the negative zero. Due to network set-

up in a digital computer, it is time consuming to

work with a negative zero. Thus, the subtractive

process is used more widely in computer design for

it will never arrive at a negative zero. (See ex-

ample 4^11.)

Example 4-1 1.

By the subtractive process, subtract +7 from + 7

using end-around-borrow, and sign bit notation.

+ 7 = +ll 12 = 0111 using sign bit notation

^ = 01 1 1

fi=01 11

//S = 0000

B/? = 0000

£>/F = 0000

.-. OOOO2 = + OOO2 = + 000,0

After selection of one of the above processes

(additive or subtractive) an example should be

processed and appropriate designations for level,

register (A or B), intermediate and final solution

tagged. Next, each intermediate and final digit

position process expression (Boolean) must be

written, and simpUfied. Once the simplified

Boolean expressions are known, the registers and

logical circuits can be tied together to produce the

desired computer network.

We shall now consider both the additive process

and the subtractive process using a three-level

register and sign bit processing.

Operation: A+B io C (The plus (+) denotes the

additive process.)

Truth table for half-add/carry process. (The con-

ditions that A and B can assume are indicated in the

first two rows.)

SUM=UU
llll2 = -0002 = -000i

A
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Sample problem:

^ = 130,1, ln = -100 = -4,o
+

fi=l3l20, lo = -010 = -2io

HA = 03 hliOo

CR = 02 Oi \oleac where CR3 = EAC

//^=03l2 0, lo

CR = OzliOoOeac

HA =03 02 0ilo

C/? = l2 0iOoOeac

HA = h O2 0: lo

CR = 02 0,0o0eac

Sf/M=l3 02 0ilo = -110=-6,o
Each subscript denotes level and each half-add

(HA) process denotes intermediate sums. The

carry iCR) always has an end-around-carry ieac)

level indicated in the extreme right-hand column

and the subscripts denote at vk^hich level the carry

originated.

Boolean expressions:

Individual

A. Half-add operatioji^

(1) HAo = A^o + AoBo

This expression is derived from the pre-

ceding truth table and is read from left to

right as foDows: The half-add operation at

the zero level iHAo) is equal to a one (1) if

it should happen that Ao is equal to a one

and Bo is not a one or Ao is not a one and

Bo is a one.

(2) HAi=A,'Bt+'A,Bi

(3) HA2 =A2B2+A-A
(4) HA3 = A3B3 + AsB^

B. Carry operation

(1) CRo = ASo + iEAC){Ao + Bo).

The first term of this expression is based

on the preceding truth table and is read

from left to right as follows: The carry op-

eration at the zero level iCRo) is equal to

a one (1) if it should happen that Ao is equal

to a one and Bo is equal to a one.

The second term of this expression is

based on the preceding truth table and the

following examples.

.4=l302liln

+
B=l3l20,0„

HA = 03hliU
CR =020i0olea.

HA = OihliOo

CR = 020,1 oOea.

and so forth

.4=l302l,0o

B=l3l20,lo

HA^O^lzlilo

CR =0,0,Oolea

//^ = 03l2llOo

C« = 020,loOea

and so forth

The second term of the expression is read from

left to right as follows: The carry operation at the

zero level [CRo) is equal to a one (1| if it should hap-

pen that the end-around-carry (EAC) is equal to a

one and Ao is one or Bo is one. Notice that the

end-around-carry ieac) can also have the designa-

tion CR3 in the preceding example.

(2) CR,=A,B^+{CRo)[A, + B,)

(3) CR2 = A2B2 + {CR^){A2 + B2)

Substituting (1) and (2) in (3)

CB2 = ^2B2 + (^lB,)(^2 + B2)

+ (/loBoK^i + BiM2 + B2)

+ [EAC){Ao + Bo)(Ai + B,){A2 + B2)

(4) CReac=A3B3 + {CR2){A3+B3)

substituting (1), (2), and (3) into (4)

CB.ao=^3B3 + (/i2B2M3 + B3)

+ {A,B,){A2 + B2}{A3 + B3}

+ {AoBo)(A,+Bo(A2 + B2){A3 + B3)

Notice the term, {EAC){Ao + Bo){Ai + Bx){A2 + B2)

{A3 + B3}, is omitted for an EAC cannot be ob-

tained from itself.

C. Final sum operation

1. So = HA,^AC + HA.£AC
2. S, = HAiCRo + HA,CRo

3. S2 = HA2CRj + Hl2CR,

4. S, = HA3CR2 + HA3CR2

General

A. Half-add operation

(1) HA„=A„Bn + A„Bn

B. Carry operation

(1) CR„ = A„B„ + {CRn-,){A„ + B„)

(2) EAC = AyBx + (CRs-x) (A.>,+By)

= CRo~i
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Figure 4-6.—Logic diagram mechanization of >^+6 to C (on adder).
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Figure 4-7.—Logic diasram mechanization of A—6 to C (a subtiactor).
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C. Final sum operation

(1) S, = HA,iCR„-, + HAnCRn-i

where n is equal to the 2" level and N is the highest

level of the register (the most significant place level).

Operation: A—BxoC
Truth table for half-subtract/borrow process

A



CHAPTER 5

DIFFERENTIATION OF ALGEBRAIC FUNCTIONS

5-1. Introduction

Beginning with this chapter and through the

remainder of the book, we will be deaUng with the

mathematics known as the calculus; both differ-

ential and integral calculus. The meanings of

these terms wiU become evident as we proceed.

It is recommended that the student work all

examples and exercises as many points not men-

tioned in the main body of the text are introduced in

the examples and exercises.

5-2. Functional Meaning and Notation

Suppose we see an equation y= x. It should be

readily apparent from our previous mathematics

courses that y is a function oi x or, reworded, assign

a value to x and y is determined. We say that .r is

the INDEPENDENT variable and y is the DEPENDENT
variable. Any mathematical changes introduced by

some constant will not alter the fact that y is a func-

tion of X alone. The notation usually used for this

relationship is y=f{x) and in the equation y= x,

f(x) = x.

In this case the choice was arbitrary for we could

have just as easily chosen x as the dependent vari-

able and y as the independent variable. In any par-

ticular physical problem however, the choice is not

normally arbitrary. For example, in a d-c circuit

with a given battery, the current that flows is

dependent on the resistance we insert. In this case

the resistance, R, would be the independent variable

and the current, /. would be the dependent variable

since its value varies as we vary R.

If the expression is in fact solved for the dependent

variable, y, in terms of the independent variable, x,

we say that y is an exphcit function of x.

Example 1

.

x^
y=j + 2x + l

This is an EXPLICIT function of the dependent

variable y in terms of the independent variable x.

If the expression is not in fact solved for the de-

pendent variable, y, in terms of the independent

variable, x, we say that y is an IMPLICIT function of x.

Example 2.

3xy+ x^y^= 16

This is an implicit function of y in terms of x.

The selection of which is the dependent variable and

which is the independent variable is again arbitrary

until we know the problem to be solved.

Example 3.

X"
Given y=— + 2x + 3

What values will the dependent variable acquire

when the independent variable is 2, 3, 10?

Answer. 8 1/3, 12, 56 1/3

Example 4.

Given 4jry+2y=3

Is this an implicit or an exphcit function of y?

When the independent variable, x, is assigned the

value 1, what value wiU the dependent variable

have? Answer. Imphcit, 1/2

5-3. Division by Zero is Not Defined

We may recall when learning the fundamentals

of division that it was possible to "prove" our work
by multiplying the divisor by the quotient to obtain

the dividend providing our work was done correctly.

Thus, we may verify 24-^3 = 8 by forming,

divisorXquotient = dividend

3X8 = 24

and hence the proof.
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In a like manner let us attempt to verify the

following;

divisorXquotient = dividend
OXz=0

Obviously it doesn't check. Note also that it will

check only in the case when the dividend, y, is

zero. But in this event, the quotient, 2, could take

any value for times anything = 0.

Therefore, the operation of dividing by zero is

meaningless and we say that it is an undefined

mathematical operation. We MAY NEVER DIVIDE

BY ZERO, and care must be used to avoid such an

operation.

Example 5.

x^ + 1

-2:c+l

1 + 1 2

What value does the function y=

attain when :e= 1?

(A) When x = l, the function is y= 1-2+1

Thus, the function is liNDEFINED at x=\.

5-4. Limits of Variables and Functions

The idea of calculating limits of variables and

functions wiU be used directly and indirectly

throughout the remainder of the book. We will

attempt to deal mainly with the working concepts

rather than the theoretical concepts.

Stated formally the concept of the hmit of a

variable is as follows: the variable V is said to ap-

proach the constant L as a Hmit when the successive

values of V are such that the numerical value of the

difference (V— L) becomes and remains less than

any preassigned positive number.

Less formally we may say that suppose V=f(x)
and as we assign values to x nearer and nearer to

some value, a, V approaches nearer and nearer to

L. Therefore the limit of F is L as :*: approaches a.

We note this as Um V=L

An example will help to clarify this point.

Example 6.

y=/U)and/U) = 4/V^

..y=4/\^

Notice as we choose values for x closer and closer

to 4, y assumes a value nearer and nearer to 2. We
say the hmit of y or fix) as x approaches 4 is 2. In

notation form

]imf{x) = ]imy= 4 =2.
'-'

V-x

(Remember we are interested only in the positive

root in this case.)

If we approach 4 from more positive values, that is

from the right-hand side of 4, we call this the right-

hand hmit and note it as

hm y=2

If we approach 4 from less positive values, that

is from the left-hand side of 4, we call this the left

hand hmit and note it as

hm y=2
jr->4-

It will almost always be true that with the func-

tions in which we are interested, the left- and

right-hand Umits will be equal.

With this background we are prepared to examine

several theorems concerning hmits. Let us con-

sider three different functions of x; f{x) = y, g(x)

= w, and ^(x) = ()V. Suppose that the following

Umits are vahd for our chosen functions of x\

lim/(;c) = Um y= A,

Mm g(x) = ]im w = B,

lim <I>(jc) = hm v=C

Considering these three functions we have:

Theorem 1 . The sum of the hmits is equal to the

hmit of the sums.

Sum of the hmits = hmit of the sums

hmy+hm w + \im j; = hm(y+M;+ v)=A + B + C
I— i x-'L y — L , — L

The three dots .-. mean "therefore." In this example
we are interested in only positive values oi x and y,

that is, X > and y > (fig. 5-1).

Note that this theorem will also hold for subtrac-

tions in any order since the subtraction process is

merely the addition of negative quantities.
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Theorem 2. The product of the limits is equal to

the limit of the products.

lim y lim w lim v = lim iywv) = ABC

Theorem 3. The quotient of the Limits is equal to

the limit of the quotients.

[i-n
lim w

b^j]

hm
if)-

41
c

provided that lim f 7^ since division by zero is

undefined.

5-5. The Meaning of Infmlty

Let us again look at figure 5—1. What value does

y approach as x approaches zero. (We must be

careful not to say as x becomes equcd to zero for

we may never divide by zero.) We can see from

the graph that y becomes positive and increasingly

large.

When a variable becomes and remains greater

than any number v^^e may assign, vie say that vari-

able is approaching INFINITY. If the variable is

positive and increasing in this manner, it is ap-

proaching + 00. If the variable is negative and
decreasing, it is approaching — oo. In the event

we are not concerned about the sign of the func-

tion, we say it is approaching infinity without

specifying which direction.

A function that is approaching infinity in either

direction is termed UNBOUNDED.
We note these cases as lim y= =>o. Urn y= + oo,

or lim y=— 00.

T • 1 4
In our particular equation of y=—7=, no matter

Vx
what number we may arbitrarily &ssign y, we may
exceed this number by choosing x nearer and
nearer to zero. (But never equd to zero.) We

4
may write then lim—7= = + 00. We choose +00

since we have limited our values to positive values
of x and y.

Operations with infinity may be summarized as
follows:

(a) Any number multiplied by infinity is infinity.

C 00 = 00 where C is a constant
(b) Any number divided by infinity is zero.

C/oc =
(c) Any number added to infinity is infinity.

C + oo = oc

Severed example problems on finding limits of
functions foUow:

Example 7.

(a) hm (^x'^ + Zx)= 22

(b) lim
3jc2

1^ x^ + 2x+\
= 2

(c) hm

Figure 5-1 . Graph of y=
Vi

M-'"
In the above problems we allow x to approach

the assigned vcdues, but never actually reach them.

In these simple examples however, the result may
be attained by actual substitution. In more com-

plex cases this wiD not work.

5-6. Procedures for Calculating Limits of Inde-

terminant Forms

Indeterminant forms occur in some cases when
we attempt to find the limit of some function by

substitution as mentioned in section 5-5. Forms
which we shall term as indeterminant are:

00
-, — ooXO, 0", ooo 1» and 00 — 00.

00
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Powerful theorems are available for handling

these forms, but they are beyond the intention of

this text. If further information is desired, refer

to any advanced calculus text. However, we will

later examine the form 0'

Simple algebraic manipulations will enable us to

deal with most cases in which we will be interested,

and experience will dictate the procedure to follow.

The solutions to the following problems will be of

assistance.

Example 8.

Verify the following solutions.

x'-' + 2x- + x-7
.

3jc3 + x~ + 4x+l'

(A) We first see that direct substitution will yield

the indeterminant form ^ since «= added (or sub-

tracted) to any number is <». We must proceed in

another manner.

(B) Divide both numerator and denominator by

the highest power of x that occurs in either. Here

x^ occurs in both so we divide by x^.

x^ , 2x-
I
X 7

x-"^3x^ x^ 'ix 1

X JC^ x-'

=lim 14 1

X x'- x"*

(C) RecaUing that any number divided by oo is

zero we have

1 + 2 +
X
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product of two variables, r) and e (fig. 5-2). The

initial value of tj is 8 and e is 1. We first allow e to

approach zero, that is, we make e an infinitesimal.

What happens to the product T/e if 17 = 8 and does

not change as e^O? In the vertical columns

labeled A through H, we see that the values of rje

range from 8 in column A to 77 in column H.
16

If we

0, the product Tje would approachcontinued as e

zero also.

Now suppose we say that 17—* along with e and

at the same rate as e. By the same rate we mean in

this example that if the value for e is read in column

C, the value for 19 is read in row C. The values for

the product rje now range from 8 in column A and

row A to -77777: in column H and row H. This is much
2048

less than — which was the value of rje when 17 was

fixed at 8 and the value for e was read in column H
as e—» 0.

This example is meant to illustrate the fact tliat

THE PRODUCT of two infinitesimals will approach

zero faster than the product of a single infinitesimal

and any number. In a like manner we could show

that the product of three infinitesimals would reach

zero even faster than two, etc.

The product of two infinitesimals we call a SECOND
ORDER infinitesimal, and the product of three

infinitesimals we call a THIRD ORDER infinitesimal,

etc.

5-8. Continuity

A function /U) is CONTINUOL'S AT A POINT P if the

hmit oi fix) at the point P is equal to the function

evaluated at the point P. [f{P)]. If lim f(x)=f{P),
x—*P

the function is continuous. If a function is not con-

tinuous, it is said to be discontinuous.

7^-^0
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When we speak of a function being continuous, we

imply that it is continuous over the range of values

with which we are interested. We shall only test for

continuity at a point and thus the entire range of

values should be investigated point by point. In

most instances of concern to us the question of con-

tinuity will be apparent.

Example 9.

Investigate the following functions for continuity

at the indicated points.

(a) f(x) = x^+latx = 'i

(A) limx2+l = 17and/(4)=16+l = 17
1—4

(B) Since lim f(x)=f{4), the function .v'+l is

CONTINUOUS 'at X = 'i.

(b)/U) =^^atx = 2
X— Z

(A) hmmil (..

<—2 x — 2
=li

(x-2){x + 2)

(x-2)
=Umx+2=4

j-»2

and/(2) has the indeterminant form - and hence/(a;)

is undefined at x = 2.

(B) Since lirn/U) IS NOT EQUAL to/(2), the func-

tion is DISCONTINUOUS at A; = 2.

ic) f(x) = ratA:=l
X— 1

1

(A) Um—^ = 00. The limit does not exist and
t— 1 X — 1

we say the limit APPROACHES infinity (not EQUALS

infinity).

(B) The function does not exist at jc = 1 so that the

function is DISCONTINUOUS at jc= 1.

A graph of this function is given in figure 5-3.

5-9. Increments

An increment of a variable is the change in value

of that variable. If x were to change from 2 to 5, we

Figure 5-3. Plot of y=f(x)=^^-
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would find the increment of x (written Ax and stated

'"delta x") by subtracting the initial value, 2, from the

final value, 5. That is Ax = Xf—Xi = 5-2 = 3. The

increment of a variable is ALWAYS the final value

minus the initial value. If the increment is positive,

the variable is increasing in value and if the incre-

ment is negative, the variable is decreasing in value.

Example 10.

Find Ay (increment of y) in the following function

with Ax as given.

y=f{x) = 2x^ and Xi = 5.Xf=7

Two methods will be shown.

Method 1. Calculate y, and y/ from the corre-

sponding values of x and then find Ay from yf— yi.

yi = 2xi^ = (2)(5f = 50

y/=2V = (2)(7F = 98

Ay= y/-y, = 98-50 = 48

Method 2. When x changes from 5 to 7, we

assign x = 5 and Ax = 2 and y will also change. We
indicate this as

y+Ay=f{x + Ax), but y=/(j:)

f{x) + Ay=f{x + Ax)

Ay=f(x + Ax)-f(x)

Now since x + Ax = 7 and x = 5, Ay=f{7)—Jl5) and

since /(x) = 2x^, /(?) = 2(7^) = 98, /(5)= 2(5^) = 50 and

Ay=98-50 = 48

5-10. Average and Instantaneous Rates of Change

A natural extension of the increment concept

would be to ask, "How rapidly does the dependent

variable change with respect to the independent

variable?"

Suppose that we traveled the road between two

towns, a distance of 30 miles. Let us say we did

this in about one hour. We could say that we
AVERAGED 30 mph for the trip. In formula form

our average velocity, v (read "f bar") is equal to the

distance traveled divided by the overall time

, , . _ total Distance
elapsed, i.e., v = —. -. t-

time elapsed

Here our increment of distance, AD, is 30 miles and

our increment in time. At, is 1 hour. We have then

Z^ = -V- which IS our AVERAGE VELOCITY or the AVER-

AGE RATE of change of distance with respect to

time.

Note in particular that we have made no mention

of how our speed varied at any instant since it

probably fluctuated from 60 mph on the freeways to

zero mph at the traffic lights. We have only indi-

cated our AVERAGE RATE.

In a similar manner we may calculate the average

rate of change of y with respect to x where y is some
function of x.

We already know (1) y=f{x) and (2) y+Ay
=f{x + Ax).

Subtracting (1) from (2) we get,

y+Ay=f{x + Ax) (2)

-[y=fM] (1)

Ay=f(x + Ax)—f{x) giving us the familiar ex-

pression for Ay. However, we must divide through

by Ax to give the AVERAGE change of y with respect

to the change of x.

Ay_ f(x + Ax)-f(x)

Ax Ax

Now we return to our cross-country journey.

We could calculate our INSTANTANEOUS rate of

change of distance with respect to time by choosing

some segment of our total increment of time (choose

Ati where A< = total time = A<iAf2+ • - .+A;„)

small enough so that our velocity would be nearly

constant during this subincrement of time. In

other words, choose Afi —* 0! This would enable us

to calculate our instantaneous velocity during the

time A^.

Vi = instantaneous velocity during Ati

= lim AD
All

This may again be extended to calculate the

INSTANTANEOUS rate of change of y with respect to

X by allowing A.t—»0. The instantaneous rate of

change is caDed the derivative of y with respect to

X. In notation form we have:

dv^ hm Ay^ I'lm fix + Ax) — fix)

dx '^-"Ax
^-^

Ax
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Symbols used to indicate the derivative include

-^ ,f'{x),y' . D{x), and others.

dyWe will limit our use to -r- and y'

.

dx

dx

Since we define the derivative,

dy ^\imf{x + Ax)-f{x)

dx Ax
. it follows that in order for

the derivative to exist, the defining limit must exist.

The operation of finding the derivative is called

differentiating.

The general procedure or rule for finding the

derivative of any function is given below. This

general rule is sometimes called the "delta process."

(1) Assume y=f{x) so that

(2) y+Ay=f{x + Ax)

(3) subtract 1 from 2: A.y=f(x + Ax)-f(x)

Ay_f(x + Ax)-f(x)
(4) divide by Ax:

Ax Ax

(5) take the Hmit as zl»r-^0:

dy_\im Ay_ lim /(.r + Ax) —fix)

Example 5-1 1.

(a) Given the ohm's law relationship oi V = iR

where V is the voltage, i is the variable current, and

R is the constant resistance so that V=f[i). Calcu-

late the rate of change of voltage with respect to the

dV
current, i.e., —rr •

di

Following the steps given in the general rule, we

have:

(1) V=iR
(2) V+AV=(i + Ai)R

(.3) AV={i + Ai)R-iR = AiR

dV_\\mAV_
(o) —rr—M—o~rT — t\.

di Ai

Therefore the derivative of the voltage with

respect to the current is a constant equal to the

resistance.

(b) Given P = i'-R where P is the power given off as

heat in the resistor R and i is the variable current

passing through the resistor. Calculate the rate of

change of the power with respect to the current, i.e.,

(if
X. I.

—f7 , when the current is z amperes.
di

(1) P=i-R
(2) P+AP = {i + Airm = {i^ + 2iAi + Ar')R

(3) AP = {2iAi + Ai^)R

... AP 2iAiR + Ai^R .-,.„
,
,.„

(4) -rr= — =2lR + AiR
Ai Ai

dP Hm AP lim
(5) -J7=^,^<i-r-7 = ^,^»2lR + AiR = 2iR

di Ai

dP
..-77=2iR so that when i is 2 amperes, the

derivative = 4/?.

Exercise 5-2.

Using the procedure of the two previous examples,

calculate the derivatives of the following functions.

4. y= 'iax

1

1

.

y= mx + b

2. y= 2j*:2+l 5. y =

3. y= x — 3x^

5-11.

:r+l

for

6. y=
X

DifFerentiatIng AlgebraicTheorems

Functions

So far in our work we have utilized the general

form for differentiating functions. While important

in understanding what principles are involved in the

differentiating process, it is far too cumbersome for

general practical use.

The following theorems must be committed to

memory, BUT ONLY AFTER A THOROUGH UNDER-

STANDING OF THEIR DEVELOPMENT HAS BEEN
ATTAINED.

The formulas are first listed without explanation

for ease of reference. Derivations using the general

rule for differentiation follow u and v are to be

considered as functions of x while c is a constant.

(The words formula and theorem will be inter-

changeable in this text for the formula symbolically

represents the theorem.)

dic)
^

dx

d(x")

dx

1.

2.

=

diu+ v

dx
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_ d{u") „_, du
7.
—j^=nu" '-J-dx dx

3. y= u + i'

8. -7^= ^-^-wherey=/"(«), u = </)U)
dx du dx

9. -p-= -p where y =/(:«:)
dx dx

dy

10.
d(cx)

dx

Derivations of the above formulas

1. y=cf^=0
dx

Since y has the same value for all values of x,

any change, Ax. in x does not affect y and Ay=0.

Ay
A^

lim Ay_dy
.t —= 0,but:.., ^=^ =

dx
=

z. y= j[;"-p = nx" '

A. Allow X to vary by Ax;

.-. y+ Ay= (.t + A.r)"

B. Calculate Ay;

Ay= ix + Ax)" — x"

C. Divide by Ax and take the hmit as A.v-^0;

c?y_ lim Ay_ (x+ Ax)" —x"

c/x A.r Ax

D. Expand (x + Ax)" by the binomial expansion;

ra(/i-l)
{x + Aj:)" = x" + oj:""'Ax + - -x"~^Aar^ + . . . + Ajt"

Jy
E. Substitute in expression for -7-

;

i" + nx""'AxH x"~'ax'+ . . . + l^x" — x"
dl= lim f

dx A.t-.o Ax

x""'-A.t + . . . + A.«""'^= lim „^.-i + "'"-"
dx ^^0 2

rfx

Example 5-12.

Find the derivative of y= x^. Where n = 3 and

n-\ = 2
dy

'

' dx
3x'

dy__du y. dv

dx dx dx

A. Allowing X to assume an increment Ax will

cause u to vary by Au and v by A?;;

.-. y+ Ay= u + A« + !) + Ai;

B. Calculate Ay;

Ay= u + Au + f + Af — {u + v)

Ay=Au + Av

C. Divide by Ax and take the limit as Ax -^ 0:

dy_ lim Ay_ lim Au lim Av

di~ ^'^"Ai~ '^-o'Ki ^-^^Ai

, dy du , dv
so that ^-= ^-+-;-

dx dx dx

Example 5-13.

Find the derivative of y= x^ + x + 7. Hereu=x'',

v = X and c = 7.

By formulas 1, 2, and 3:

^=5x^+1
dx

4. y=cv

dy_ dv

dx dx

A. Allowing X to vary by Ax will cause a change

Ay in y and Av in v, but no change in c.

y+ Ay= c( f + Ai^)

B. Calculate Ay;

Ay= c(v + Av) — cv

C. Divide by Ax and take the limit as A_v—>0;

rfy_ lim Ay_ lim Ai;

^-^"-"Ax"^^°^Ax
dy_ dv

dx dx

Example 5-14.

Find the derivative of y=5x^.

Here c = 5 and f = x'';

.dy^
'

' dx
5(5x-') = 25x^
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5. y=uv
dy_ du dv

dx dx dx

A. Allowing a: to vary by \x wiU cause a change Ay

in y, Au in u, and An in t;;

y+ Ay= (u + Au)(t; + Ad)

B. Calculate Ay;

Ay= UV+ Vila +ulv + AuAv — uv

C. Divide by Ax and take the Hmit as Ax-^O:

dy_ Um Ay_ Um Au

dx

so that
dy_ du

Ai— Ol'

dv

Ax Ajc Ax

<fx rfx dx

lim AuAf

Notice in the expression

since Ai — o

AuA

= 0.

Ax

Ax

that the numerator

is a second order infinitesimal and the denominator

is a first order infinitesimal. For that reason the

numerator wiU approach zero more rapidly than the

denominator (see section 5^8).

Example 5-15.

Find the derivative of y={x^+l){3x' + 2). We
, du - dv ^

have u = (x-+l). v = {3x- + 2), and^j:;=2x ,^=6x.
dx ' dx

.^= (3x2 + 2)2x+ (x2 + 1 )6x = 2x(3x2 + 2 + 3x2 + 3)
dx

dy^
dx

6. y=
:

dx
dx

du

Tx dx

A. AJlow X to vary by Ax;

/'

y+ Ay= -
Au

v+ Av
B. Calculate Ay:

u + Au u uv + rAu — uv — u\v
Ay

Ay=

V + Av V

vAu— uAv

i'(i' + Ar)

v{v+ Av)

C. Divide byAx and take the limit as Ax-

dy_ Um Ay_ lim Au Ai;_ du

dx Ax Ax Ax dx

dv

dx

since At
t;(y+ AD)

as Ax^ 0.

Example 5-16.

Find the derivative of y= -

^ + 2x-l

7. y=u"

u = x — 3, v = x- + 2x—l, and -;—= 1, ^-= 2x + 2
dx dx

(fy^ U^ + 2x-l)(l)-(x-3)(2x + 2)

"dx (x^ + 2x-lf

dx ^x- + 2x-lf [x^' + lx-lf

dy_ „_idu

dx dx

A. Allow X to vary by Ax; y+Ay=(u + Au)"

B. Calculate Ay; Ay=(u + Au)" — u"

C. Divide by Ax and take the limit as Ax —>0.

dy_ hm Ay_ hm (u + Au)" — u"

dx^^-^Ax"^-" A^

D. Expand (u + Au)" by the binomial expansion;

(u + Au)" = u" + nu"-'^u H 2 u—'Au' + . . . + Au"

E. Substitute the expansion in D into the expres-

dy
sion for

dx'

dy_ lim

dy_

dx

u" + nu" 'Au +
mn-1)

u"-2Au^ + . . . + Au" — u"

dy lim f Au n(n — 1) ,, Au Au"
X=i»-o 1""-' T- + 7i

u"-'Au— + . . . +T—

-p- = nu"~' ^— as all other terms approach zero in
dx dx

the hmit as Ax^ 0.

Example 5—17.

Find the derivative of

y=(3x2 + 4x+l)3. u = 3x2 + 4x+l and n = 3.

.-.^= 3(3x2 + 4j, + 1,2 ,6^ 4- 4)
dx

4^'= (18x + 12) (3x2 + 4x + 1)2

dx

8. Assume we have y as a function of u, i.e.,

y=f{u) and u as a function of x, i.e., u = 0(x). We
say that y is then a function of x through the func-

tion u.

We wish to prove that:

dy_dy du

dx du dx
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A. Allowing X to vary by Ax will in turn produce a

change Au in u and Ay in y:

y+Ay=fiu + Au) u + Au = ^(x + Ax)

B. Calculate Ay and Au;

Ay=Jlu + Au)-fiu) Au = ^{x + Ax)-^(x)

C. Form the ratios -r— and -7—
:

Au Ax

Ay^fiu + Au)-fiu) Au^ ^(x + Ax)-^{x)

Au Au Aj: Ax

r> T • ji u '^y ^> ^"
u. it IS readily apparent that -t- = -7— -7—

^ ^^ Ax Au Ax

You may better grasp this by mentally canceling

the Au's on the right-hand side, but we don't in

fact do this.

Now substitute the equivalents in part (C)

in the expression for

AY^ fiu + Au)-f{u)

Ax Au

Ay
Ax-

<P{x + A-y) - <t>{x)

Ax

E. Take the limit as Ajt^O which in turn will

cause Au —* 0;

dy_ lim Ay
d^-'^Ai

_lim ./?u + Au)-/?u)

Au
lim (i>(x-\-Ax)— ^{u)

Ax

The first fraction on the right side of the

equation is the definition for-;— and the second
au

. du

dx

We have ^=^'^
ax au dx

Example 5—18.

Find the derivative of y=u^ with respect to x

when u = 3x- + 4x + 1

See example 5—16.

dy d(u^) „ , ,du c?(3x2 + 4x+l) ^
, ,-7-= —!—=3u- and -^= 3 = 6jc + 4

du du dx dx

dx du dx
= (3u-) (6a: + 4)

= 3(3x2 + 4x+l)2(6x + 4)

Notice the results of examples 5—17 and 5-18 check

as indeed they must. In many cases simple sub-

stitution of (l>(x) ioT J{u) is not so easily handled and

hence the need for the important formula 8.

9. y=fix) and-^ = -r
dx dx

dy

Formula 9 is useful when we deal with inverse

functions. Suppose y=fix). It must be equally

true that we may solve this same equation for x yield-

ing j;=g(y). y=f{x) andx = g(y) are then called in-

verse functions. In particular, y=/ix) is termed

the direct function and x = g{y) is termed the inverse

function.

dy

A. Allow x to vary by Ax; y+ Ay=c (x+ Ax)

B. Calculate Ay; Ay=cx+ cAx— cx = cAa:

C. Divide by Ax and take the hmit as A.v^O

lim Ay_Jy_
Ai— 0-7——-p— c

Ax dx

Example 5-19.

Find the inverse function of the given direct func-

tion. The inverse function is found by transposing

the equation and solving for the independent

variables.

Inverse function

^+6

^ = (18x + 12) (3x2 -I- 4;^ + 1)2
dx

Direct function

y=x^ — 6

y= tan x

y=Vx

y=e-^

dy
We proceed now to derive the relationship for -j-

as given in 9.

A. Given the inverse functions y=fix) and

x= <f){y) and allow x and y to vary by A.r and

Ay:

.-. y+Ay=/(x + Ax) and x + A.v = <A(y+ Ay)

B. Calculate Ay and Ax;

Ay=/(x+ Ax) -fix) Ax = 4>(y+ Ay) - <P(y)
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C. Form the ratios -;— and -7—;
Ax Ay

A. Using formulas 5 and 7 (par. 5-11) we differ-

entiate 6xy^ and 4:ey;

Ay^fix + Ax)-fix) \x_ <i>{y+Ay)-<i>{y)

Ax Ax ' Ay Ay

Ay Ax
D. Form the products of the ratios t~ and -r—

:

Ax Ay

Ay Ax T
Ay 1

~A I~=l or ^ = -7-
Ax Ay A,v Ax

Ay

E. From part C we take the Umits of the ratios as

follows;

hm Ay lim Jjx + Ax) —fix) _ dy

Ax Ax ax

Ax hm ^(y+Ay)-
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5-13. Higher Order DifFerentiation

Once we have found the first derivative of a

function, -p- or y', we still have a function. If this
ax

new function is differentiable, we may find the sec-

ond derivative of the original function. This proc-

ess may be repeated any number of times, i.e.,

"n" times.

The successive derivatives may be noted in the

following two ways for our purposes;

dy cPy cPy d"y

dx ' dx^ ' dx^ ' • • • ' i^^n

(2) y',y",y"',. ,y"

The order of the derivative corresponds to the

number of times the original function has been dif-

d-y
ferentiated. The second derivative, -7-; or y", is

of the second order.

Example 5-22.

Find the first four derivatives of

y= x^ + 3x^ + 9x'+7.

y' = 5x'' + 9x-+18x
y" = 20x-i+mx+l8
y"' = 60x-+l8
y"" = 120x

Example 5-23.

Find the first two derivatives of x'- — y~ = 36.

Let us choose to do this example by implicit

differentiation.

x'-f = 36

(use theorem (3) paragraph 5-11)

2x - lyy' =
Xy'=—

, the first derivative.
} y'

(use theorem (6) paragraph 5-11)

„ (y)(l)-(A:)(v')
r —

:-,

''—
y

X
Substitute r: for y'

Exercise 5-3

dx dx
1. Find — and -^^ of the following functions.

j:+ 1

b. x:--\-y^ = r-

x+\
c- y= 7x—\
d. ;t/-l =

2. Perform the indicated operations,

a. y=(u2+l)3 u = {x-\f
(use theorems 7 and 8 paragraph .5-11)

Find-p: -7= 12l;t- 1)" -l-24(i- 1)'+ 12l.>:- IF

b. y= - Find
V

graph 5-11.

Y- — \

(Use theorem (2) para-

,f/v

/=
y— x^

V y- — X-
, the second derivative.

-• .- ., Find-^. (Transpose and solve

for y, then use theorem 7 paragraph 5-11.)

dy_ 1

d^ ± V2.V + 1

5-14. Geometric Interpretation of the Derivative

We are famiUar with terms like slope and tangent.

We wiU use these terms here to illustrate the appli-

cation of the derivative to geometry. (See fig. 5-4.)

We are aware from earlier work that the slope of

a line is equal to the tangent of the angle that the

line makes with a horizontal. For example, the

slope of line P1P2 is equal to tan S. Also calling the

slope, m.

Ay
mp.p, = tan 8 = T— where Ay=y> — yi,

and \x = Xi — X\. We may also call this the

average slope of y=f[x) between the points Pi and

P2.

Suppose now we allow the point P2 to approach

Pi along y=j{x) through P3 and P4. Notice that

the slope of line P1P3, mp,p,„ < vhp^p^ and that

tnp^P^ < mp,p^ < mp^p^. Notice also that these

lines are approaching nearer and nearer to the line

that is exactly tangent to y=f{x) at Pi. We caU this

tangent hne T. In fact in the limit as Pa^Pi,
Ajr—*0 and we may write:

lim ^=^
^^oA.v dx
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Xf X^ Aj

Figure 5-4.—Geometric interpretation of the derivative.

But this is exactly how we defined the derivative of

a function earlier. More formally,

A. t:^y= y-i — y\=j{x-i\—f{x\) and Ly)(. = xi — xx

„ lim Ay^ lim yi.ti + Ajr) -/(.ti)

_ lim y(A:2)-/(x.) Jy
'^~*''

a;2 — a;i dx

We may say the derivative of a function evaluated

at some point X\, is equal to the slope of the function

(and therefore the tangent) at point X\.

A positive slope indicates the function is increas-

ing as the independent variable increases and a

negative slope indicates the function is decreasing

as the independent variable increases.

Example 5-24.

Find the equations of the tangent and normal lines

to the function y= x^-V2x — l at the point (1, 1),

figure 5-5 A.

First we evaluate the slope at (1, 1).

dy
-r=m = 2x + 2 at (1, 1), m = 4
dx

remember the general form for the point slope form

of a straight line to be;

y\ ~ yo .,, , , ,—^1^— = m with jTo = I and yo = 1

We have for the tangent line (yo=l and jco=l);
y-1
=

7= 4 or y— 1=4a: — 4 and y= 4j: — 3 which isx—\ '

the equation of the tangent line.

The slope of the normal line is the negative

reciprocal of the slope of the tangent.

1

or ^y— ^ =— x-\-\

and 4y=5 — j; which is the equation of the normal.
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Figure 5-5.—(A) Graph of y=x=+2x— 2, y=4x, y=4x— 3,

and y=^^ (B) Graph of y=4x— 5x-, y=1.25— x, and
4

Example 5-25.

Find the point on the function y=4x — 5x- where

the tangent Une has an inclination of —45°, figure

5-5 B.

The tangent of —45° is — 1 and is equal to the

slope of the tangent line at the point desired.

ax

10.x: = -5
1

5-15. Critical Points; Maximum and Minimum

As the independent variable (x) passes through

a range of values, the function (y) will in general

pass through maximum and mimimum values. If

the maximum value is the greatest value the func-

tion reaches over its defined range, we call it an

ABSOLUTE MAXIMUM. If the minimum value is the

least value the function reaches over its defined

range, we call it an ABSOLUTE MINIMUM. If the

maximum or minimum value we are investigating

is not absolute, we call it a RELATIVE MAXIMUM or

a RELATIVE MINIMUM. Any maximum or minimum

value occurs at a CRITICAL POINT for the function.

In figure 5-6 we have plotted a function with four

critical points in its range of definition. (We are

saying that the function does not exist anywhere

beyond those values that we have plotted.) The

critical points, A and C, are maximum points.

Point A is a RELATIVE MAXIMUM since in the

vicinity of A, the function reaches its greatest

value at A. Point C is an ABSOLUTE MAXIMUM for

the function reaches its greatest value over its de-

fined range at C. Similar reasoning permits us to

call critical point B an ABSOLUTE MINIMUM, and

critical point D a RELATIVE MINIMUM.

1 3
When x = -, y= T -- t4ie point is

1 3

2'4

Figure 5-6.—A graph of f(x) showing maxima and minima

points.
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We will examine the characteristics of a maximum

point by looking at figure 5-7. As we proceed

through increasing values of x, the slope (m) of the

function changes from a positive value for a; <A, to

zero at a; = A, and finally to a negative value for

dv
x> A. That is, -p- changes from + to — as we pass

ax

through a maximum point. We must remember that

-p is equal to the slope at any point on the function.
ax

We may examine a minimum point in a similar

manner by looking at figure 5-8. As we proceed

through increasing values of x, the slope changes

from a negative value for x<B, to zero at a; = B, and

finally the slope is positive for jr > B. That is,

-T changes from — to + as we pass through a
ax

minimum point.

In actual problems when we are investigating

the sign of the derivative on either side of the

critical point, we choose values for the independent

variable very near to the value at the critical point.

We must do this in order not to become involved

with a critical point that may be close to the one

in which we are interested.

Fisure 5-7.—The change of slope through a maximum point.

Figure 5-8. The change of slope through a minimum point.

The second derivative also may be utilized to

determine which type of critical point we have.

dy
Just as the first derivative -p of y=f{x) provides us

ax

with the rate of change of y with respect to x, the

dV
second derivative, -^, provides us with the rate of

change of the first derivative. In other words, if

the second derivative is positive, this indicates

that the first derivative is increasing or becoming

more positive. Conversely, if the second derivative

is negative, it would indicate that the first derivative

is decreasing or becoming less positive in nature.

(More negative would mean the same as less POSI-

TIVE.) Utilizing this information enables us to pre-

dict whether we have a maximum or a minimum
point.

If at the point in question, we evaluate the second

derivative of the function and find it to be positive

we could conclude that our critical point was a

minimum. Remember that a positive second de-

rivative indicates an increasing first derivative

and hence an increasing slope. At a minimum

point the slope changes from — to + as we pass

through the point which indicates an increase in

value for the first derivative. Similarly, a negative
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second derivative indicates a decreasing first deriva-

tive and hence a decreasing slope. We would

conclude that the critical point in question was

a maximum point, for at a maximum point the slope

changes from + to — , indicating a decrease in value

for the first derivative.

Since aO critical points occur where the slope is

horizontal, it must be true that at any critical point,

the first derivative is equal to zero.

So far we have dealt with only maximum and mini-

mum points, but there is a third type of point called

an INFLECTION POINT in which we wiO be interested

(fig. 5-9). An inflection point occurs between maxi-

Figure 5-9. Change of slope through an inflection point.

mum and minimum points. That is, an inflection

point occurs between critical points although an

inflection point is not itself termed a critical point.

In order to locate a point of inflection we set the

SECOND DERIVATIVE equal to zero and solve the re-

maining equation. Once these values are deter-

mined we choose values slightly less than and

slightly greater than this point and determine the

signs of the second derivative on either side of this

point. If the second derivative changes sign ( -f to

— or — to +), the point is a point of inflection.

Some functions have no critical points and no

points of inflection. Such a function is y= Inx

(fig. 6-16).

Procedures for determining the locations and

types of critical points and locations of inflection

points are given below;

A. Calculate the first derivative and set the result

equal to zero. From this equation determine

which values of the independent variable wiU

yield critical points.

B. The first derivative test: Choose a value for

the independent variable shghtly less than the

point in question and note the sign of the first

derivative. Choose a value slightly greater

than the point in question and again note the

sign of the first derivative.

Three possibilities may occur:

1. Signs change from + to — , indicating a maxi-

mum point.

2. Signs change from — to +, indicating a mini-

mum point.

3. Signs remain the same, either — and — or + and

+, implying a point of inflection (see D below).

C. The second derivative test: Calculate the

second derivative and evaluate it at the critical

point. Three possibilities result:

1. y > 0; minimum point

2. y" < 0; maximum point

3. y"= 0; test fails, use the first derivative test

D. If we are interested in locating points of in-

flection, we solve the equation resulting from

y"= 0. We examine the signs of y on either

side of this point. If the signs of y" are dif-

ferent, we have located a point of inflection.

The following examples will help to illustrate the

general procedure.

Example 5-26.

Find and determine the nature of all critical points

in the function y=x^— 12a;, figure 5—10.

(1) Calculate the first derivative:

dy_

dx
= 3;(;2-12

(2) Set the result equcd to zero and solve for x.

3x2-12 =
x- = 4: and x =±2

When x = 2, y= 16, and when x =— 2, y= 16.

(3) First derivative test; Taking point (2,-16),

we evaluate the sign of the first derivative on either

side of 2.
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MAX. POINT P(-z.i6)

MIN. POINT

Figure 5-10.—Graph of y=x'—12x showing maxima and
minima points.

T dx

dy
'

' dx

dy

,

x= -^:-r= ~,— 12.. ^>0 (positive slope)
Z dx * dx

Since the sign of -r^ changes from — to +, we con-
dx

elude that the point (2,— 16) is a minimum point.

(4) Second derivative test using point (2,-16):

^=6:t sothat for:t =2,0>O

(4) ĝ=6.at. =2g<0
d}y

dx^
is decreasing.". P-2,16 is a maximum point since

in value, i.e., going from + to —

.

Example 5-27.

Examine y =—— for all extreme (critical) points.

^ ,2^('- !)_(,_ 1)41'^)

,1^ dy^_dt dt_
^ ' dt t*

dy

dt

2e + 2t ^ 2t-e ^2-t
t*

~
t* t^

dy 2 — t

(2) ^= so that —;—= and at f = 2 we have an
dt t^

extreme point. Whent = 2, y= -'

(3) We wiU use the second derivative test to

determine the nature of this point.

-f3-6f2 + 3f3 2(-6

dt^

(P-y
_

df'

„,, „ d^y 4-6 1
When. = 2,^=-^= -3

.-.The point ( = 2 and y= Tis a maximum.

(4) We now wish to locate any points of inflection.

We set the second derivative equal to zero;

<fy^ 2(-6 _
J<2 t*

:. The second derivative tells us that the first deriva-

tive is increasing in value, i.e., going from — to + and

point (2, — 16) is a mimimum point. We will repeat _

steps (3) and (4) for the point (-2, 16) without greater than three and note the signs of^
explanation.

. f = 3 and 7= 3

We choose values of t sUghtly less than and shghtly

flPy

(3) |:3^=-^-12.-.3^>0 (positive slope)
2dx 4 dx

3 dy 27 ^- dy ^ ^ ,
. , ,— 7;.,=—.— 12 .•.-;- <0 (negative slope)

2 dx 4 dx

t = 2.5

t = 3.5

2(2.5) -6
(2.5)^

2(3.5) -6

d^y
-rir < (negative)
dt'^

d'y > (positive)

-J- changes from + to — .•. maximum point at (— 2, 16)
ax

(3.5)-» dt^

As the second derivative changes sign from — to +,

2
< = 3 and y= - is an inflection point.
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Example 5-28.

Determine all critical points of the function

y= U-lP.

{l)^=3(z-lf
az

(2) ^=0 =

az
= 3(2-1)2

.".2=1 and y= is the point to be examined.

(3) We first attempt the second derivative test:

cPy
^-r = 6(2— 1), but when 2=1 the second
dz^

derivative is zero. Thus, the test fails and we must

go back to the first derivative test.

(4) We will test the signs of the first derivative at

3 1
2 = - and z= - which are on either side of 2=1.

1 dy
2' dz

>0

Therefore, the first derivative is zero when
2=1, but the SIGN of the derivative on either side

of 2=1 is positive. Thus, the point 2=1 and

y= is neither a maximum nor a minimum point.

If we set the second derivative equal to zero,

we get 2=1. Checking the sign of the second

derivative on either side of z=l, we obtain;

1 d^y
'2'

dz^
<0

3 d:'y

.The point 2=1 and y= is an inflection point.

Example 5-29.

In this series circuit (fig. 5-11) we have the con-

stant source E, the constant source resistance r,

the current i, and the load resistance R. We wish

to calculate what load resistance is necessary to

permit maximum power transmission from the

source to the load.

Power used in a resistor such as load resistor R

is given by the formula P = i^R where P is the power

in watts, i is the current in amperes, and R is the

load resistance in ohms. In this equation P is

the dependent variable and is a function of the

TWO quantities, i and R. Since we wish to deter-

mine the maximum power utihzed by the load

MAXIMA AT R

Figure 5-11.—Series circuit for example 5-29.

resistance, we must look for some relationship

between i and R in order to get P as a function of

R alone.

The total current in the circuit can be found from

the relationship i =——jr We have already stated
r + n

that both E and r are constants so we have i=/lR).

We may now substitute ——^ for i in the power

expression, i^R.

/ E Y E'^R
This gives P= (

, p ) ^ = . 4. d^2 • We wish to

maximize the power with respect to the load re-

^
dP

, .

sistance, so we take -7^ and set it equal to zero.
dK

Remembering that E and r are constant;

../ E^R
dP
dR dR

Using theorem (6) paragraph 5-11 let u = {E-R).

and v = {r+ Rf.
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Substituting in dP_{r + R)E'-2E-R

du dv

dx dx

dx

^ , P^.,
d{Em p2;p d(r+Rf

dR [(r + RYY

Using theorem (5) paragraph 5-11 let u = E^ and

v = R.

Substitute in

d(uv) _ du dv d{E''R)

dx dx dx ' dR
RO+ E^- 1 = E^

dR
Note: £ is a constant and -j^ = 1

dn

Using theorem (2) paragraph 5-11 let x = {r+ R)

and n = 2

Substitute in

dx dK

dP_ (r+ R)W--E^R{2) (r+ R)

dR {r + Ry

Cancel one ir+ R) throughout;

dP {r+ R)E'-2Em
dR (r+ Rf

Set^= 0;
dK

(r+ R)E'-2E^R =
r+ R = 2R

r = R

We see the critical point for the load resistance

occurring when the source resistance is equal to the

load resistance.

We will attempt to confirm that this will yield a

maximum power utihzation with the second deriva-

tive test. If the second derivative is negative for

this value of R, (R = r), we wiU have a maximum.
You may say in a practical way that it is not a mini-

mum for it should be evident minimum power

utilization wiU occur when the circuit is opened.

This would still leave the possibility that our

critical point may be an inflection point!

Proceeding:

dR ir+ R)-'

We will use formulas 2, 4, and 6 for differentiating

the expression tor -ttj •

dn

First simplify;

dP rE^+ E-R-2E~R rE--E-R
dR (r+ R)- (r + Rf

and remember that r and E are constants;

d'P d (rE--E-'R\

dR- dR\ {R + r)3

Treat the above expression as y=- and take
V

du dv

dy_ dx dx

dx V'

let u = {rE--E-R) and v = (R + r)3

j->D "^ + '"'' -75 <''^' -E-H)- irE- - E-R) -^iR + rfi
u'r an an

dR-

d

\(R + rr

^^,,E.-Em^^irE^, + ^i-E^-R^ =-E^§ = -E'-

Treat the first term of the above expression as y=c
dv

and take -r=0: let c = (rE'}:
dx

treat the second term of the above expression as

y = cv and take -j-= c -r: \etc = — E'-andv = R.
dx dx

Treat the above expression as y= x'' and take

dy

dx
nx" '

; let n = 3 and x = {R + r)

Combining the above terms,

d^P^ (R + rP (- E^) - jrE^ - Em) (3) (R + r)'

d/?2 (R + r)«

Cancel (r+R)~:

d-P^ (r+R){-E-)-i{rE--Em)
dR~ ir+R)^

d'-P - E'r- Em - 3E-r+ 3Em
dR'~ (r+ R)''
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Simplify:
(PP_ 2Em-^E~r

Now substitute the value for R at the critical

point in question {R = r):

(PP^ 2E^r-^E-r^ 2E~r

dR- {2ry 16^

d'P_ E-

dR- 8r^ • dR'

and because the second derivative is less than

zero (that is, negative) we have verified that when
the load resistance R is equal to the source re-

sistance r, power utilization will be a maximum.

E-R

^<0

A plot of the power expression P-
-+R)

showing the maximum point at R-

figure 5—11.

r IS given in

Example 5-30.

A series resistance, capacitance, and inductance

circuit with an a-c input is shown in figure 5-12A.

Assume we have a constant input voltage, a constant

inductive reactance {Xl) and a Constance resistance,

R. We wish to determine what value of capacitive

reactance (Xc) will give the least opposition to cur-

rent flow in this circuit. Opposition to current flow

in an a-c circuit is called impedance and is desig-

nated by the symbol Z.

The expression for the impedance in this circuit is

given by:

Z=V/?2 + (A',.-.Yc (See figure 5-12. B)

We want the minimum value of Z with respect

to Xc. Remember that R and Xl are to be held

constant.

We may see by inspection that the minimum
value for Z occurs when Ac = A^/,. We wiU proceed

to verify this by the use of the calculus.

The procedure will be the same as in the preced-

ing problems:

(i) Calculate the first derivative and set the result

equal to zero to determine what values of the

independent variable (Ac) will yield a critical

point.

(2) Use either the first or second derivative test to

determine whether the point is a maximum or

minimum.

SERIES RLC CIRCUIT

GRAPH OF Z' '^R'*(Xl-Xo)^

Figure 5-12.—(A) Series /?t.C circui t. (B) Graph of

Proceeding;

z=w^(XL-XcfY
(We treat this expression as y=u" and calculate

d^_

dx

dZ

du

dx
formula (7) paragraph 5-11.)

1,
,y-=-[«2 + (Ai-Ac)-]-^2(Ai-Ac)(-l)

Collect terms and equate to zero;

Ac Xl
[/?2 + (Ai-Ac)-]^

=

.Ac=.Az,

The critical point occurs when Ac is equal to At.

Now we must determine whether this yields a

maximum or a minimum value for Z.

We will use the second derivative test.

dZ

dXc

Ac

[/?2 + (Az.-Ac)-]^
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Treat this expression as y= - and take

du dv

dy_ dx dx
let u = [Xc-Xl) and v=[R'' + (Xl -Xcf] *

„_ [R' + iXL-Xcf]^ -^(Xc-X,)-(Xc-XL):^\.R' + {XL-X,n''
(fZ _ dAc dAc

W + ^Xt -X,)^f- (D-iXc-Xd— [R^ + {Xl -X,f\^
_ dAc

{[R^ + (Xl-Xc)'-]'*Y

Treat the expression -ttt [XR^+ iXi-Xcf] ^ as y= u"

and take ^=no"->^: let u = R'' + {Xl-XcY and
dx dx

1

"=2

~-W+[Xl-x,)']'^

d
Treat the expression -tu- [R^ + iXt^Xcf^ as

jv "*" jv yX-L Xc)
uAc dAc

-h^XX^-Xc)

^^ [R^+iXL-Xc,]^a)-a.-XL^
[«^+(;..-;..,^]^

[R' + iX^-Xc)']'^

{[R' + iXu-Xc)']'*}'

(Xl-XcUl-X,)
[R'+at-Xcf]'*

[R'+{Xt-Xcry

d^Z _ R^^{XL-XcY-{XL-Xr^
^' W+ {X,-Xcff^

We substitute our critical point value of

Xc, Xc = Xl\

d^Z _ R^ + (Xl -ZJ^ - (Xl -X^f _ R'

dXc' lR^ + (Xt~XLym R^

d^Z^l d-'Z

dXc^ R °''
dXc'

^

d^Z
Since -jrn; > 0, we have a MINIMUM value for the

dXc'

impedance (Z) when Xc = Xl-

Looking at the expression for Z,

Z = y/R^ + (XL-Xc)\

the minimum value for Z is R. When this occurs,

we say the circuit is in a resonant condition.

In an a-c series RLC circuit we have found that

resonance occurs when Xc=Xl-

R and Xl are constants.

-^[R' + (XL-Xcn=0+ :^{XL-XcY
uAc oAc

Treat the expression -rrr (Xl—Xc)^ as y= u" and take
OAc

5-16. Rectilinear Motion

Rectilinear moition is simply motion along a

straight Hne. Motion of this type may have either

of two possible directions at any instant. One of

these directions is arbitrarily chosen as positive

and thereby fixes the other direction as negative.

In figure 5—13 let us assume we begin our move-

-r-=nu" ' ^- ; let u=A'i.— A^c and n = 2
dx dx

-^jXL-Xc)' = 2(Xt-Xcr-''^^-~- = 2{XL-Xr){-l)

Substituting (3) in (2)

jj^^[R' + (XL-X,n'^=^[R' + (XL-Xcn-^2iXi.-X,)(-l)

--(2){Xl-X,)

'IR^ + {X,-Xc)']'^

Substituting (4) ip (1)

Figure 5-13.—Rectilinear motion.

ments from the origin marked O. If motion is

from left to right, O to A, B to A, A' to B', etc.,

it will be considered +, and motion from right to

left, O to A', B' to A', B to O, etc., will be considered

negative.

Suppose we move a distance OB in some time

interval Ar. Our AVERAGE rate of change of
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distance with respect to time would be;
OB

We term this the average velocity during the time

Af. If we had called the distance OB, As, instead,

we would see that the average velocity v (called

"f bar") is equal to

Allowing A/ -^ 0, we may define the instantaneous

rate of change of distance with respect to time as

ds

dt

lim As _ds

• for by the definition of the derivative we know that

We term this limit the instantaneous

... ds
velocity. I.e., i' = -r

"

'
dt

Note that the instantaneous velocity, v, is written

without the bar above the v.

Proceeding in a hke manner, we may define the

average rate of change of the velocity with respect

to time as the average acceleration, i.e., a= -v-.

The instantaneous acceleration expression may be

arrived at by again allowing At —* 0. We have

lim Av_dv
At dt
— 'j^ and is equal to the instantaneous

acceleration.

So far we have; (1) y = -r and (2)a = -^. but
dt dt

, dv d^s
notice that ~r— ~r^ " We may elaborate and say

that the velocity is equal to the first derivative of

the distance with respect to time, and the accelera-

tion is equal to the second derivative of the distance

with respect to time.

Velocity in rectilinear motion is; r = -

c

Acceleration in rectilinear motion is;

dv (Ps

dt dt-

Example 5-31

.

Given that a particle moves in a straight line

according to the equation s = 3f + 8?'', where 5 is

in feet and t in seconds. (Fig. 5-14.)

Figure 5-14.—Graph of s= 3f+8r', a = 16, and v= 3H-16f.

(a) What distance is traveled during the first

three seconds? s is unknown and f = 3.

s = 3(3) + 8(3)2 = 9 + 72 = 81 ft.

(b) What is the AVERAGE velocity during the

fourth second?

-^As^ Si-s3 ^ 3(4) + 8(4)2 _ |-3(3) + 8(3)-]

At t4 — tii 4 — 3

_ 140-81 ,,, ,,
v= = 59 ft/sec

(c) What are the instantaneous velocities when

/ = 3 sees, and « = 4 sees.?

ds d{3t + 8^2)

dt dt
= 3+16;

rs = 3 + 16(3) = 51 ft/sec

1.4 = 3+ 16(4) = 67 ft/sec

(d) Calculate the average acceleration during

the third second.

-^ i>3-t'2 ^ 3+16(3)-[3+16(2>]

t3-t-. 3-2 16 ft/sec 2

(e) Calculate the instantaneous acceleration at

t = 2 seconds.

a =— TT= ..
' =16 ft/sec

-

dt dt^ dt

It is important to note that in this example the

instantaneous and average accelerations are equal.
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This is always true when the acceleration is a con-

stant value.

5-17. Curvilinear Motion

Curvilinear motion is motion along a curve in a

plane. Figure 5-15 illustrates curvilinear motion

from P through Q to R.

Curvilinear motion may most easily be thought

of as two simultaneously occurring rectilinear

motions. One portion is the rectilinear motion of

the particle along the y axis and the other is the

rectilinear motion of the particle along the x axis.

The vector addition of these two motions yields

curvilinear motion as in figure 5—15.

It would be well to mention at this point that both

velocity and acceleration are vector quantities,

i.e., both have magnitude and direction. As such

the resuhant velocity and acceleration vectors

may be resolved into components and the compo-

nents may be combined by vector addition into

resultants. If these ideas are not immediately

apparent, review of Math, Volume 2, NavPers

10071-A, section on vectors, is recommended. We
will identify vectors in this text by bold face print

with a small arrow above the letter. A would mean

"the vector A".

In general, curvilinear motion will be described

by some relations such as y=/(/) and X = g{t).

By these we mean the y and x are both functions

of the variable t, but they are different functions of

t. The velocity vector in the y direction is given by;

Vu = —r, and in the x direction Vj- = —r-
at dt

The resultant velocity is the vector addition of the

two component velocities.

^ ^ , ^ dx.dy
v = v. + vy =^ + -^

The direction of the resultant velocity can be

found from tan = —- In this relationship we
Vx

may drop the vector notation and use magnitudes

dy

1 ivT 1 /I
I'y dt dy ,

only. Note that tan =—= -j- =^ and we see
Vx dx dx

dt

that the velocity vector at any point lies along the

tangent to the curve at that point and points in the

direction of travel along the curve (fig. 5-16).

The speed of a particle traveling along a curve

is the magnitude of the velocity vector.

Speed =
I

i^
I

= VVx~ + Vy'

Fisure 5-15.—Curvilinear motion. Figure 5-16.—Velocity in curvilinear motion.

72



Chapter 5 -DIFFERENTIATION OF ALGEBRAIC FUNCTIONS

The acceleration vector in the y direction is given

dvy
, . , ,. . ^ dvx ™,

by ay^—r- and in the x direction aj = —7— • We"at at

may then calculate the resultant acceleration;

^_ ^ ^ _ dv_ dvi dvy _ (Px cPy
a-ax + ay—j^--^+

d(
~

dt^ dt^

The direction of the acceleration vector is obtained

by tan (j)
=-^ • Here again we use the magnitudes

only (fig. 5-17).
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1. y=

2. y=

x'^+l

(x - l)'^

3. A varying current is passed through a resistor

whose resistance changes according to r= 2,-,
'

For what current will the voltage drop across the

resistor reach its maximum value and what is this

maximum value? The relationship between

voltage, current, and resistance is V=iR (fig. 5-18).

B. Problems involving rectilinear and curvihnear

motion.

nf_r1
R =

Figure 5-18.—Find f„.a« and (' for £„,

1. For any body falhng under the influence of

gravity, the equation y= Vot + -^z at'^ describes its

motion. Vo is the object's initial velocity, a" is the

acceleration due to gravity, and y is the distance the

object has fallen with respect to any chosen refer-

ence. With y given in feet and t in seconds, (a)

when will the falling body halve the distance to the

earth if it began its journey at 64 feet? (b) What is

its velocity at this time? Time t = seconds is

when the body is at 64 feet. Hint: choose your

reference at 64 feet and pick all velocities and

accelerations down as positive.

2. A particle moves along the x axis according to

x = 3t^ — t^. Take positive values of x and its

derivatives as motion to the right, (a) When will

the particle come to rest once it has begun its

motion? (b) In what direction is the acceleration

vector pointing at this time? (c) In which direc-

tion is the particle moving at ^ = 3 sec?

3. Given the relations y=t'^ and x = 2t describing

curvihnear motion. At t = 3 seconds calculate the

particles position, Vx, Vy, and v and Cx, Sy, and a.

X and y are in feet.

5-18. Related Rate Problems

Many physical problems exist in which all the

variables are functions of time. In addition the

problems are of such a type that relationships be-

tween the various variables are also available.

Since these problems so frequently occur, they are

called RELATED RATE PROBLEMS.

The following several examples will illustrate the

techniques used to solve this group of problems.

Example 5-33.

Two ships begin from the same point at the same

time. Ship A travels due north at 10 knots and

ship B travels due east at 20 knots. How fast are

the ships separating at two hours after the trips

began? (See figures 5-19A and 5-19B.)

We are interested in -r- and will proceed with this

in mind.

Let us check the two requirements for a related

rate problem to see if they are fulfilled in this case.
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(1) Are all variables functions of time? Yes,

since x, y, and z vary with time.

(2) Does there exist some relationship between

all variables? Yes, as z^ = x^ + y'.

(A) Write the relationship between the variables.

z^= x^ +f
(B) Differentiate this expression with respect to

time.

„ dz r, dx dy
2z -r=2x -r+ 2y —

dt dt dt

(C) Substitute all known quantities.

3^=20 knots; ^= 10 knots: t = 2 hours
dt dt

a: = 40: y=20

We get z from z = Vx^ +f = V2000 and z = 20V5"

.-. 2(20V5)^= 2(40X20) + 2{20)( 10) and ^=i2,
dt dt V5

= loVs knots.

Example 5-34.

If a sphere expands at the rate of 15 ft^/min,

what will be the rate of change of the radius when
the diameter reaches 10 feet?

(A) Volume of a sphere =-^ ttR^

dt 3 dt

4 dR
(C) 15 = - 77(3) (25)^

dR_ 3

dt "2077 ft/min

Example 5-35.

A right circular cone (fig. 5-20) has a height of

12 inches and a base diameter of 8 inches. If the

cone is inverted and we pour water into the base of

the cone causing the radius at the water level to

change at a rate of - in/min, at what rate will the

volume of water be changing when the radius is 2

inches?

WATER IN

r = 4'

Figure 5-20.—Filling a right circular cone.

(A) The volume of a right circular cone is given by

i;= - Txr'-h. We are interested in the rate of change

of volume and are given the rate of change of the

radius. We must find an expression for h in terms

of r.

To find this expression we look at the geometry of

^. , , ,
/i 12

the cone. The sides have a constant slope — - — -p
r 4

= 3.

/i = 3r at any position along the altitude.

(B) ..i. = ^77r2(3r) = 77-H»

-r= 37rr2 ^jjj j-=2 in,
dt dt

dr 1 . , .

(C)
dv

= 377-(2)^ T
= 47J- in^/min.

dt

Exercise 5-5.

1. A vertically mounted 12-inch cylinder is

2
- filled with water. The level of the water is drop-

ping at the rate of - in/min. If the cylinder has a

radius of 4 inches, at what rate is water escaping

from the cylinder?

2. A ladder 20 feet long rests with its top most

portion against a building and 16 feet from the

ground. The ladder shps and begins to slide down
the building at a rate of 2 ft/sec. A bucket of paint

is resting 4 feet from the base of the ladder on the

ground when the ladder begins to shp. At what rate
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is the base of the ladder moving when the bucket

of paint is hit by the base of the ladder?

3. A curve is described by ix = y^ — 2y+l.

What is the value of the abscissa, x, when the ordi-

nate is changing at the rate of 3 units/sec and the

abscissa is changing at 2 units/sec?

5-19. Circuit Devices

Applications of the derivative can be found in

any field of science. We will investigate several

apphcations here as associated with electricity

and circuitry.

As we've found in our basic electricity courses,

any current-carrying conductor has a magnetic

field associated with it (fig. 5-21). If for any rea-

son these magnetic hnes of force are altered or

changed in number, we have produced an induced

emf (electromotive force) in the conductor with such

polarity as to attempt to restore this magnetic field

to its original undisturbed condition.

Figure 5-21.—Magnetic lines of force (left hand rule).

The calculus allows us to express this event quite

simply. The equation is E -

dt
This equation

states that the induced emf is dependent on the

rate of change of the magnetic hnes of force. The
negative sign indicates that the induced emf pro-

duces an effect opposite to the initial change of

magnetic lines of force. E is in volts when -j- is
at

in webers/sec.

Example 5-36.

A conductor is carrying a steady current when

the switch to the circuit is suddenly opened. The

magnetic flux (<!>) drops from 2.5x10^ maxwells to

maxwells in .05 seconds. Assuming it changes in

a uniform manner, calculate the magnitude of the

induced emf.

(A) If the flux changes in a uniform manner,

A(f)^d(j)_ 0-2.5x10*' maxwells

At dt .05 seconds

dt
= —0.5x10" maxwells/sec

We have 10" maxwells for each weber of flux so

that —;-= — 0.5 webers/sec.
dt

(B) Since E = -
d^
dt

, we nave

E = + 5 webers/sec = 5 volts.

The previous calculations were for a single con-

ductor. Let us carry this a bit further to see what

would happen if we were to consider an air core coil

with N turns. We will then find that the total

number of lines of magnetic force (flux = </)) would

be N<f> where N is the number of turns and </> is the

flux associated with each turn. We would also find

that this TOTAL number of flux hnkages is propor-

tional to the current in the coil. N<}) is propor-

tional to i. Now to equate the two we must add a

constant of proportionality which we will caD L.

We have then N(f) = Li and we call L the INDUCTANCE

of the coil.

N -r^ If we now
dt

We already know that E

differentiate the equation N4> = Li with respect to

, , deb , di „. .,
, J

time, we get A* —;- = L -r • ^mce /V and L are con-^
dt dt

stant for any coil.

dt dt

The induced emf in a coil is equal to the induct-

ance of the coil times the rate of change of the cur-

rent. Again the negative sign tells us that the

induced emf opposes the changing current. E will

be given in volts when L is in henrys and -j- is in
dt

amperes/sec.
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Example 5-37.

An inductance coil of 3 henrys has a uniformly

changing current that varies from 5 amperes to 1

ampere in 2 seconds. Calculate the induced emf.

(A) Since the current is changing uniformly,

At

1-5 =— 2 amp/sec.

di
(B) E =-L^ = -

dt
-(3)(-2l = 6 vohs.

The inductance that we have been discussing so

far is called SELF-INDUCTANCE. We will now con-

sider MUTUAL INDUCTANCE. Mutual inductance

occurs between two coils when they are arranged so

that the flux from one coil hnks the other. When
the flux in the first coil changes, it cuts across a

number of the turns in the other coil and this action

produces an induced emf in the second coil (as

well as the self-induced emf in the first coil). We
will use figure 5-22 to illustrate mutual inductance.

With the circuit shown in the figure there is a

steady state value for the current through inductor

Li. The voltmeter associated with L-z will NOT

deflect. If we change the potentiometer setting to

C, the voltage drop across Li will decrease and

thus will cause a reduction in the current and flux

through Li. Since some of the flux from Li is

linked with L2, it will cause a reduction of flux about

L2. An induced emf will be produced across Lo in

such a manner as to oppose this reduction in flux.

The induced emf in L2 created by the reduction in

current in Li will be indicated on the voltmeter.

When the current again reaches a steady state

value, the voltmeter will return to zero.

Figure 5-22.—Mutual inductance between Lt and L;

698-990 0-64—

6

The magnitude of the induced emf can be deter-

mined from E=—M— where M is the mutual induct-
dt

ancebetween Ai andZ-i.and— is the rate of change

of the current in L,.

The discussion of derivatives is continued to

another circuit element, the capacitor.

The charge on a capacitor is given by the expres-

sion Q= CV where Q is the charge, C the capaci-

tance, and V is the voltage across the capacitor.

Assuming the capacitance is constant, we may
diff"erentiate the expression with respect to time.

Q = CV
dQ^^dv
dt dt

We know by definition that the current in a con-

ductor is the flow of electrons past a point in the

conductor per unit of time.

dt

, dv

dt

This expression tells us that the current in a

circuit containing a capacitor is equal to the

capacitance of the capacitor times the rate of

change of the voltage across the capacitor. The
current is in amperes when the capacitance is in

farads and the rate of change of voltage is in volts

per second.

In figure 5-23 we have an application of this

formula. The capacitor and central zero ammeter
are connected to a potentiometer, Pi, on one side

and a center tapped resistor, /?, on the other.

As we vary the potentiometer setting from a to 6

or b to a, we find that the current in the ammeter
is dependent on the speed at which this change is

made. The faster we move the potentiometer

setting from a to 6, the greater the current pro-

duced. We expect this since the equation,

i = C-r, clearly indicates the magnitude of the

current depends on the rate of change of voltage

apphed across the capacitor.

Example 5-38.

Suppose a change in potentiometer setting from

a to 6 covers a change in voltage of 40 volts. Deter-

mine the current indicated on the ammeter if the
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Figure 5-23.—Capacitor current dependent on change of capacitor voltage.

change is made uniformly in (1) 2 seconds, and (2)

0.05 second. The capacitor value is 10 micro-

farads.

In a uniform change.(1) A.

Av

At'

dv
'

dt'

40.

2
" ^20 volts/sec

, dv

(2) A.

i = C^=(10x 10-6 farads) (20 volts/sec)
dt

j = 2 X IQ—' amperes

At is now 0.05 second.

At;.

At'

dv

di''

40

0.05"
800 volts/sec

speak of dy and dx as separate parts of the deriva-

dy
live -f-.

dx

A close look at figure 5—24 should help to make
clear exactly what we mean by the differential of a

function.

Notice as we move along the curve y=f(x) from

A to B, x takes on an INCREMENT Ax and y takes on

an INCREMENT Ay.

We have drawn the tangent to y=f{x) at point A.

Recall that the slope of the tangent line at a point

is equal to the slope of the function at that point.

dy dy .,, ^
.". -^= tan a = -r— =/ (x)
dx Ax

B. i =C^= (10XlO-'^ farads)(800 vohs/sec)
dt

(' = 8x 10"^ amperes

5-20. Differentials

Before we attempt to define the differential of a

function, let us recall that we defined the deriva-

tive of y=f(x) as

dy_ lim Ay_ lim f(x + Ax)—f{x)

dx~ "^^^ Ax~
^-^^

Ax

In words, we say that the derivative of y=/(j:) is

the limit of a ratio Ay to Ajc as Ax approaches zero in

the limit.

Once we differentiated the function to obtain the

derivative, WE NEVER spoke of dy alone or dx alone.

However, when we speak of differentials WE DO

From the above relationship we may say in the

case of the INDEPENDENT VARIABLE, V, the INCRE-

MENT, Aa:, of the independent variable is equal to

the DIFFERENTIAL, dx, of the independent variable.

Since -r- = —— , we have Ax = dx.
dx Ax

This equation defines what we mean by the dif-

ferential of the independent variable.

dy
We now have the equation —^=f'(x), but now we

dx

treat the --r~ portion as a ratio of the two parts dy and
dx

dx. (These two parts are called the differentials,

dy and dx.) ,

Let us take the equation —r=f'{x) and multiply
dx

both sides by dx;
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X x=^x

Figure 5-24.—Difference between dy and Ay.

dy

dx
dx=f'{x)dx

'• dy=f'{x)dx

This equation defines the DIFFERENTIAL OF THE

DEPENDENT VARIABLE. Normally we call dy the

differential of the function.

It should be evident that the differential of the

function, dy, is NOT EQUAL to the increment of the

function. Ay (fig. 5-24). Notice that Ay=dy+Tj
so that T) = Ay— c^y. We see the differential dy is

a good approximation to Ay only if tj is small, dy

will only approach Ay if t) approaches zero, that is,

only if Tj is an INFINITESIMAL. This will occur only

if Ajc is chosen small.

The following statements summarize what we

have said about differentials.

(1) The increment and differential of the in-

dependent variable ARE EQUAL.

!^ = dx

(2) The differential of a function is equal to the

product of the derivative of the function and the

differential of the independent variable.

dy= F'{x)dx

(3) The increment of the function is NOT EQUAL

to the differential of the function.

^y=dy+-q

(4) By choosing Ajt small enough, we may make

r) small so that dy is a good approximation to Ay.

The following formulas for differentials are given

without proof and correspond to the formulas
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previously given for the derivatives of these similar

forms.

1. d{c) =
2. d{x")= nx"~'dx

3. d(u + v) = du + dv

4. d(cv) = cdv

5. d{ uv) = vdu + udv

fu\ vdu— udv

i'^-'-
7. diu") = nu" ^du

5-21. Problems Involving Differentials

Calculating the increment of a function is nor-

mally quite long and involved. By using the

differential to approximate the increment, the prob-

lem solving time is greatly reduced. In most cases

the error that arises may be neglected. A few

examples will best illustrate the general procedure.

Example 5-39.

Find the approximate area of one surface of a

ring of 9 in. inside diameter and 9.25 in. outside

diameter (fig. 5-2.5).

(A) We could of course simply subtract the area

of circle 1 from the area of circle 2, but first we

choose to do the problem by differentials as we need

only an approximate answer.

(B) A = nr^

dA = 2TTrdr (We will call dA=AR)

9 9.25 9
let r = -in. = 4.5 in. and dr =^ -in.

dr= 0A25m.

^/( = (2) (3.14) (4.5) (0.125) = 3.53 in^

(C) We wiU now work the problem by subtract-

ing the areas of circles 1 and 2 in order to see what

error we introduced.

') A,
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But di = ±0.03i

.dP = 2iR(± 0.03/ )
=± O.Oei^R

(C) We are looking for the % error (or tolerances)

in the power calculations.

dF_
,
0.06;-;?

P - i-'R

= ±0.06

.-. 100^= (100) (± .06) =±6%

.\n error of ±3% in reading the current values

makes it impossible for us to calculate the corres-

ponding power values any closer than ±6%.
Example 5-41

.

Find the approximate cube root of 340 by using

differentials.

(A) We form an expression for calculating the

cube root of any number: y= Vx = a;''^

(B) We now find which number is the nearest

perfect cube to 340. In our case 7^ = 343 and we

let;t = 343.

.'. dx = —3 since our number differs from 343 by — 3.

(C) Take the differential of y;



CHAPTER 6

DIFFERENTIATION OF TRANSCENDENTAL FUNCTIONS

6-1. Introduction

In this chapter we continue the development of

differentiation. We increase the scope to include

those functions known as TRANSCENDENTAL FUNC-

TIONS. A transcendental function is simply a

nonalgebraic function.

We will investigate the trigonometric functions

and their inverse functions, and the exponential

functions and their inverse functions.

A review of the basic ideas related to trigo-

nometry, exponents, and logarithms should be

undertaken at this point unless the reader is already

familiar with these subjects.

6-2. Trigonometric Functions

The trigonometric functions include sine, co-

sine, tangent, secant, cosecant, and cotangent.

The relationships that define these functions, as

well as several identities between them are given

in chapter 1.

Figure 6-1 contains values for the trigonometric

functions through 360° of arc at 30° interveds.

The corresponding angle is given in radian meas-

urements (180° = 3.1416 radians = 77- radians).

The values are correct to the second decimal place

where shown. The squares with oo indicate this

function is APPROACHING ac for these angular values

and DOES NOT mean that the function is equal to

infinity.

Graphs of all the trigonometric functions are

given in figures 6-2 through 6^7. We shall follow

the graphing of esc d as an example of the procedure

followed for the remainder of the functions.

Example 6-1

.

Graph esc 6 through 360° (fig. 6-3).

A. We first note that

1

sin 6

B. Construct a table giving values for 6, sin d,

and CSC 8.

C. Construct the coordinate axes with esc 6 on

the vertical axis and d (radians) plotted on the

horizontal axis. Choose some convenient scale for

the horizontal axis and divide it into four equal

parts each equal to - radians. Approximate where

one radian length would fall in the horizontal axis

and use this length for the units in the vertical axis.

D. We know that from to n, the sign for sin 6

is positive. Therefore, the sign for esc d is positive

and when 6 = 0, esc 6 is approaching positive in-

finity. At - the CSC is 1 and we sketch the curve

as shown in figure 6—3 between and — • As

goes beyond - and approaches tt, we see that esc B

approaches positive infinity again.

Table 6-1. — Values of d, sin 6, and csc 6.

e (degrees)'
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Figure 6-6.—Graph of fan 8.

Figure 6-7.—Graph of cot 6.

B just to the right of 77, esc 6 approaches —00.

These facts are shown on the graph.

The remainder of the graph should now be clear.

6-3. Inverse Trigonometric Functions

As we saw in section 5-12, with every function

there is a related inverse function. In the case of

trigonometric functions, the inverse function takes

on an important role.

The trigonometric function ;c = tan y has as its

inverse function y=arc tan x or y=tan"' x. Both
of these latter relationships are read, "y=arc tan

a:" or, "y is the angle whose tangent is x" i.e., tan

y= x.

We must ensure that our notation for the inverse

trigonometric functions is clear. If we mean the

inverse function, the — 1 will be placed a httle

above and to the right of the name of the type of

inverse trigonometric function as in y=sin~' x.

If we wish to indicate that the trigonometric func-

tion is to be raised to the exponent —1, we will place

parenthesis about the function and put the —1

above and to the right of the parenthesis as in

y = (sin x)~^.

The inverse trigonometric functions are shown in

figures 6-8 through 6-1.3.

Example 6-2.

Graph the inverse trigonometric function y=
arc tan x (fig. 6-12).

2TT

/
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sented by any finite quantity of numbers. We
choose 2.718 as a working value for e.

6-5. Exponential Functions

The expression y=o", where u is any function of

X and a is any positive constant except one, is called

an EXPONENTIAL FUNCTION of X. In many of our

problems "a" will be equal to e where e is the

quantity previously defined in section 6-4. The

curves of the exponential functions y=10-^ and

y=e^ are plotted in figure 6-15.

y

y-e'

5 10 15

Figure 6-1 5.—Graph of an exponential function of x.

6-6. Logarithmic Functions

In the expression y=a", u IS THE LOGARITHM OF

y TO THE BASE a. That is, if we solve the equation

y= a" for u, it will be equal to the logarithm of y to

the base a;

a = loga y.

The expression solved for u is the inverse function

of the original exponential function. We may say

that THE LOGARITHMIC FUNCTIONS ARE THE IN-

VERSE OF THE EXPONENTIAL FUNCTIONS.
The restrictions which we put on "a" in the

previous section are important and must be

remembered. In most logarithmic work, the base a
is restricted to either 10 or e. Logarithms to the

base 10 are called common logarithms, and loga-

rithms to the base e are called natural or Napierian

logarithms. The notation which we will use for

these two bases will be;

Common logarithm: logio A' or log A'^

Natural logarithm: logp A' or In A^

Suppose we ask what is logio or loge 0? We can

immediately determine these answers from the

equations y= lO-' and y= e^, for what we are asking

is what value of a: will give us y= 0.

y=10'^
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Figure 6-16.—Graph of y— ln x.

,„ d(tanu) „ du
13. -r = sec- u-j-

dx ax

, . d (cot u) , du
14. -r- =— csc^u-}-

dx dx

,. d (secu) . du
15. -;- = secu tan u-r-

dx dx

,, d (esc u) . (/«
16. -r = ^ CSC u cot u ^-

dx dx

d (arcsinM)_ 1 du

dx Vl — u^ dx

18.

19.

20.

d (arc cos u) 1 du

dx Vl - u^ dx

d (arctanu)_ 1 du

dx 1 + u^ dx

d^(a.rc cot u) _ \ du

dx 1 + u^ dx

d (arc sec u) _ 1 du

dx u\/u^ - 1 dx

d_{&TCCscu)_ 1 du

dx uVu^ - 1 dx

d (\oga u)

^

XoggC du
' dx u dx

24 ^In u) _\du
dx udx

„^ d (a") ,
<f«

25. -;- = a" In a -;r
ax f/x

26. f ''"^ = e"^

6-8. Determination of an Important Limit

Before we begin deriving the formulas given in

the previous section, it is necessary for us to deter-

This Hmit, r 11 • 1- lim sin 6
the toUowing limit: j_o

—

—.

occurs in deriving the derivative of sin B and must

be evaluated at this point.

Notice that we obtain the indeterminant expres-

sion - by direct substitution and must, therefore,

seek other means. We will resort to construction

and trigonometric relations as shown in figure 6-17.

In this figure angles (^ and 8 are right angles.

Fiqure 6-17.—Construction for proving Mm — 1.

e-»o 9

AR
1. Sin = ^,(AOBA).-.AB = AO sine

An
2. Tane = ^,(AODA).-.AD = AOtan0

AO
3. The arc AC = radius of the arc multiplied by

the angle 6 swept out in producing the arc, measured

in radians.

.•.AC = (AO)0

4. It is true that AB ^ AC ^ AD
5. Substitute 1, 2, and 3 in 4.

.-. AO sin e « (AO) « AO tan 6

6. Cancel the common factor AO;

sin ^ « tan 0.

sin 6 . „
7. Tan

cos

. sin Q

cos 6

87
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8. Divide through by sin d;

1

sin cos

9. Invert and reverse inequaUty signs;

sin 6

.

1 cos d.

10. If we aUow 6 to approach zero and investigate

the expression in 9, we see that cos 6 approaches 1.

We also see that 1 is equal to or greater than

sin , sin .
, , ^ , ,and —T— IS equal to or greater than cos which

e

is approaching 1. That is, 1

sin

u

can only be 1.

11. Finally, lim

——^1. Therefore
S

= 1 for it is between 1 and 1 which

= 1.

6-9. Derivations of Trigonometric DifFerentiation

Formulas

We will foUow the familiar steps of the delta

process in deriving the basic formulas. The steps

are outhned in chapter 5.

We will first differentiate sin u where u is a

function of x.

11. A. y= sin u

B. y+ Ay=sin (u + Ah)

C. Ay=sin (u + A«) — sin u

Ay sin(» + Au) — sin »
D.

Am Au
, but

sin (A + B) = sin ^ cos B + sin B cos A from chapter

one. Let 11 = A and Au^B so that sin (w + Au)

= sin u cos Au + sin Au cos u.

Ay sin u cos Ao + sin Au cos u — sin u
' " Au Au

_ . Ay sin u (cos Au — 1)
,
sin Au cos u

Regroupmg: — =
^^

+
Au

„ dy hm Ay_ lim sin u (cos Au — 1)

^- ^"^"-"A^"^"-" Au

lim sin Au cos u
^"^" Au

„ lim sin u (cos Au — 1) _
G. Au->0 7 — 0,

Au
since

lim cosAu— 1 cosAu+1
Au cos Au+ 1

hm — sinAusinAu

'(cosAu+l)Au 2

,, hm cos u sm Au
H. A„-n : =cos u smce

Au

lim sin Au , „ • ^ «
iu-o —: = 1 Irom section 0-0.

Au

I. Therefore, in F, -;-=cos u
du

I ir . dr , . dy
J. It v= sin u. -;^=cos u, what is-p

du dx

K. Recall that if y=/(u), and u is f{x) then

dy_dy di£

dx du dx

I Tu I- '^y '^ (sin u) du
L. 1 hereiore,-^= -^ =cosu-;-'

dx dx dx

12. A. y= cos u

B. y+ Ay=cos(u + Au)

C Ay=cos (u + Au) — cos u

„ Ay cos(u + Au) — cos u ,
, a , d\D. -r- = ;

, but cos(^+«)
Au Au

= cos A cos 6 — sin A sin B from chapter 1. Let u

= A and Au = B so that cos (u + Au) = cos u cos Au
— sin u sin Au.

„ Ay_ cos u cos Au — sin u sin Au — cos u

Au Au

Regrouping:
Ay cos M (cos Au — 1) sin u sin Au

Au Au Au

dv lim Ay lim cos u (cos Au — 1)

du Au Au

— lim sin u sin Au
All — 7

Au

„ hm cos u(cos Au— 1)_ „

Au

hm cos Au — 1

Au
= fror

previous derivation of #11.

lim sin u sin Au
Au

lim sin Au
Au— 1Au

= — sin u, since

1 as before.
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I. Therefore, in F,^ = — sin u
du

T If dy . ,
,dy

J. It y=cos u,^—=— sin u and we need-T-

•

du dx

dy dy du ^, ^
K. Again -r= —, t ' ' neretore,

dx du dx

dy dicosu) . du
-j-= -. =— sin u -r- •

dx dx dx

c u ••. .• f ,^r,. d (cos u) .
, ^substituting from (12) -,

= — sin u and fror
du

,, d (sin u)
(11) ; = cos u

du

dy_ — sin- u — cos^ o _— (sin^ u + cos^ u)

du sin''^ u sin- u

Substituting 1 for sin^ « + cos- u and esc u for-

13. A. y=tanu=
cos u

B. Rather than apply the delta process to this

ratio, we choose to treat it as a form of formula 6, in

chapter 5. Substituting sin u for u. cos u for v. and

du for dx in the expression

du dv

dx dx

dx

/sin u\ d (sin u) . d (cos u\
, , cos u ^- — sin u ^—
dv aVcos ul du du

du du

o 1 • • r ,11 t/(sin u)
,

„ , (,

substituting from (11) ; =cos u and trom (Iz)
du

djcos u)

du

dy

du

P dy__dy_ du_ ,dy__d_(co\.u) _ ., du
dx du dx dx dx dx

15. A. y=sec u =
cos u

B. We again apply the quotient formula (6) for

differentiation from chapter 5. Substituting 1 for u,

cos u for V and du for dx in the expression

Ju\ du

%)jTx-''
du dv

dx

dx ir

d (1) ,,^ d (cos u)
, cos u— — (i)-rdy_ du du

du cos- u

dy_ cos- u + sin- u

du cos'^ u

dy.

1 + tan- u

Therefore, -;—= 1 -I- tan- u = sec- u from chapter 1.

du

„ dy dy du , dv d (tan u) ., du
L. -;- = -; ;-and-p=-r- = sec- u ^-

dx du dx dx dx dx

14. A. y=cot u =-

Substituting from (1) ch 5 -^—= and from (12)
du

, , (/(cos u)
ch o =— sin u

du

dy_ sin u _ 1 sin u

du cos^ u cos u cos u
sec u tan u

p dX—dx du jdy_ d (sec u)

dx du dx dx dx

B. Apply the quotient rule (formula 6) from

chapter 5. Substituting cos u for u, sin u for v,

and du for dx in the expression

dy_
"

du

du

du dv

dx dx

dx v^

d (cos u) d (sin u)— —cos u-r
du

du

Tx

16. A. y=csc«=-:
sin u

Substitute 1 for u, sin u for v and du for dx in the

expression

-

Ju\ du_ dv

\v) _ dx dx

dx 1^
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d (1) ,,, d (sin u)

, sinu-r- ^(i)~r
dy du du

du
d(\)_

Substituting from (1) ch S-j—= and from (11) ch 6

.(sin u)
d—;—= cos u

du

dy_ cos u

du sin^ u
-=— CSC u cot u

sin u sinu

P dy_dy du dy^ d {esc u)

' dx du dx dx dx

du= — CSC u cot u—r-
dx

Example 6-3.

Calculate the first derivative of the following

expressions;

1. y=sin 2x. We have y=sin u with u = 2x.

from (11)^= cos 2x —;— = 2 cos zjc. Since —j

—

dx dx dx

= 2 from (10) ch 5.

2. y=(cosA;^)^. We may visualize this expression

as y= u" so that -r-= nu""' -r from (7) ch 5. As u is

dx dx

„ du . dicosx''-) o • 9 r /io\
COS x^, 3- must be ; = — 2j:sinjc^ trom (12)

dx dx

and n = 2 and n — 1 = 1

.

d{cos, x^)^
Therefore, 3-

dx
= 2 (cos x^y (— 2x sin x^) or

=— 4a: cos a:^ sin a:^

3. y=tan;

dy dv du
If y= uv, -p=u 3- +1;-^- formula (5) ch 5.

dx dx dx

dy d{s,m'6x)
. 4cos (a:' - 1)]

-r-= cos (x^— 1) ; hsin 6x J
dx dx dx

d (sin 3jc) „ d{Zx)
; = cos ix—;

—

dx dx

= 3 cos 3a;

d[cos(x^-\)\

((r-\)

from (11)

from (10) ch 5

(^2)

dx

d{x^-\)_

dx

= - sin (:c2 - 1) ^^^V^ from (12)
dx

2x

(6-3)

from (4) and

(1) ch 5

(6-4)

Substituting (6-2), (6-3), and (6-^) in (6-1)

^=cos (a:^
—

1) 3 cos 3Ac+ (sin 3a:) [—sin (a:^— 1)]2a:
dx

= 3 cos 3a: cos (a:^ — 1) — 2a: sin 3a: sin (x^ — 1)

6-10. Derivations of the Inverse Trigonometric

Forms

17. A. y=sin"' u=arc sin u

These equations tell us y is the angle whose sine

is u. Figure 6-18 illustrates the right triangle

with the angle y.

B. u = sin y

d («)_ rf(sin y)
C.

du du

_ dy
1 =cos y—rdu

from (11)

Applying (13) let u

dy

dx

x'^^2)_\ ,x
^'2 dx

where

Ki)_.
dx

from (10) ch5

4. y=cos (x^— 1) sin 3a:. We treat this as a

product and differentiate. We let « = cos (a:^
—

1)

and f=sin 3a;. Figure 6-18.—y=arc sin u.
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D. Solve for 4^;
au

dy 1

du cos y
, but from figure 6-18 we

see that cos y= v 1 — u^

dx^ J
du Vl-u^

c- dy dy du r ,o, u c j <^y </(sin"'«)
E. -f-=^ • ^- from (8) ch 5 and -f^= -r-

dx du dx dx dx

1 du

Vl - «2 <i>c

The question now arises whether the + or — sign

should be chosen before the radical. The choice

is apparent if we recall that the first derivative of

a function is simply the slope of the function. We
look at a plot of the function (fig. 6-8) at the point

of interest and note the sign of the slope. If the

slope is positive, we choose the sign for the radical

that will make the first derivative positive.

18. A. y=cos"' u=arc cos u (fig. 6-19)

B. u is the cosine of the angle y.

u = cos y

P d (u) _ d (cos y)
' du du

,

1 =— sin y -p from ( 1 2)
du

D. Solve for
du'

1dy

du sin y
that sin y= VI

, but from figure 6-19 we see

dy^_ 1.

dx du dx
from (8) C'h 5 and

dy _ d (cos ' u)

dx dx

1 du

19. A. y=tan-' « = arc tan u (fig. 6-20).

B. tan y= u

P d_(u) _d_ (tan y)

du du

dyl=sec^y^ from (13)
du

D. Solve for

dy_ 1

du sec^

dy

du
'

we see from figure 6-20 that sec y= vT+u^.

dy_ 1

du 1 + u-

P dy_dy du , dy_ d (tan"' a)

cte c?u (it rfj; c/x

1 c/«

l + u^dx

Figure 6-20.—y=arc fan u.

20. A. y=cot"' u = arc cot u (fig. 6-21).

B. u = cot y
d (u) _ d {cot y)

C.
<fu <fu

(fy

Figure 6-19.—/=arc cosine

1= — csc^y-;- from (14)
du
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W^

Figure 6-22.—y=arc sec o.

Figure 6-21.—y=arc cot u.

D. Solve for^ ;

au

dy_ 1

du csc^ y

We see from the figure that esc y= Vu^+ 1.

dy_ 1

'

c?u w- + 1

dy_ <iy (^uf ay ay au , ,„, u c j '^V <^ '^'"'^ '^•" "'
IL. -^= -r- —- from (8) ch 5 and -p= -r

dx du dx dx dx

\ du

u' + Xdx

21. A. y=sec"' u = arc sec u (fig. 6-22).

B. u = sec y
d (u) _ d (sec y)

C.
du du

dy
1 =sec y tan y-p- from (15)

du

D. Solve for

dy

dy

du

1

du sec y tan y
, and we know from the

figure that sec y= u and tan y= V u 1

1

E. ^= ^.^from(8)ch5
ox au ox

dy_d (arc sec u) 1 rfu

"dx dx uVu^niYdx

22. A. y=csc"'' u = arc esc u (fig. 6-23).

B. u = csc y
„ _f/^(«)_ j/^(csc y)

from (16)

" ^«
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Example 6-4.

Determine the first derivative of the following;

1. y= sin"' bx^

d (sin"' u) _ 1 du
We know that

dx Vl - u'^ dx

du

from (17)

In this problem u = bx^ and-^= 2bx from (2) and (4)
dx

eh 5

:.y = I

— Ibx— ,

Vl - 6V Vl-fe^^t"

2. y=tan-'j

d[\.Ax\ u) 1 du
and -r-

dx 1 + u- dx
from (19)

u = - and -;-=—;r from (2) and (4) ch 5
X dx x'-

dy_ 1 / q\-^ 1 / q\

1 +

x^^aAxVdx

3. y= arc sec Zttx

d (arc sec u) _ 1 du

dx uVu^ - 1 dx

du

from (21)

u = 3ttx and -^= 377 from (4) ch 5
dx

•y = ' :3. = -

1

37rxVQTT^ar^ - 1 xV9n-x^-l

6-1 1. Differentiation of the Logarithms

23. A. y=logaU

B. y+ Ay=loga (u + Au)

C. Ay=loga (u + Au) —logo u = logo

Ay=log„(l+^)

D.^=^log„(l+^)
A« Au V u /

E. Multiply the right hand side by -

u + Au

Ay_ u

Au Auu
'-('-")-:'«- (-t/

Before we continue with this derivation, it is im-

portant to recall how we defined the number e

(paragraph 6-4). We selected the following hmit

as our definition;

^=M'^iy
Suppose now we let « = - We see that as x—*^.

w —» 0. Therefore, an equivalent definition for e

would be;

I

e = lim (l + n)" •

n-»n

Now we return to part E of our derivation and we

— _L

see by letting— = n, we have ( 1 H 1 =(1 + «) ".

u \ u /

Au
Further, as Au —» so will— which is equal to n.

Therefore, hm (
1

-I )
" = „^o(l + n) "=e.

ia-oV U I

In order to get this hmit form we multiphed the

right-hand side of part E hy -

„ dy ,. Ay ,. 1, /. ,

A«\^
F. ^= bmT—= um-loga IH

du au— oAu Au^ou \ u J

dy 1,
:.-j-=-\ogae
du u

„ dy_dy du dy^_d_{logaU)

dx du dx dx dx

_ logo * du

u dx

24. A. y= log<.o

From the previous derivation we have y=loga"

,dy d {\og„u) logae
. r\ i ,

and-r^ = -;- = — (part /• ), but now we
du du u

have y=loge"

Note the base is e instead of a.

d (lege u) loge e , ,

,

1

.'.-r
=—=^^

, but log«.e= 1

du u

, , d (loge u) 1

so that-;— =-•
du u

93
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dy_dy du dy_ d (log^»)^ 1 du

dx du dx dx dx u dx

Example 6-5.

Find the first derivative of each of the following:

1. y= logio.»:^
,
du

Substituting in (23); a = 10. u = x^ and--j-= 2x

dy^ _d(\ogiox^) ^ logio e ^ 2 logio e

dx dx x^ x

2. y=\ogeX^

du
Substituting in (24): u=x~ and— = 2x

dy_d_(\ogeX-)^]_^ 2

dx dx x^ X

3. y=ln
l-x

Substituting in (24) w l+x

dy d
d.

(„.i

1 dW+x
1-
1 +

dx
(6-5)

. ^ 1 1
d\\ +x

Apply (6) ch 5 to complete the process —-:

by substituting 1— Jr for u and l+x for v in the

formula

du
dx

dv

dx

dx

d\\+x
dx

(l+.v
d(\-x)

dx
d-x) d[\+x)

(1+Jf)-

(\ + x)(-\)-(\-x)

{\-¥xf
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Substitute tan x'^ from (6-7) for u in (26)

dy_ d{e""'') _ ,^„^, d(lanx')

dx dx

f/(tan u]

dx

dx

du

dx
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dB - T^TT -- 0. 0175 RADIAN

dy=d(COSd) = -SIN ddd
::(-O.OI75)(0.707l)

: -0.0124

c/y-- -0.0124

y^dy -'COS e + c/{cos e)

cos (45°+ n = cos 45°- SIN Qd<d
- 0.7071 -(0.7071) (0.0175)
- 0.7071 - 0.0124
= 0.6947

Figure 6-24.—Calculatlnj cos 46° using differentials.

value to the angle, Q. When we use r and ^ as our

coordinates, we call them the POLAR COORDIN.'VTES.

By examining figure 6-25 the equations lor con-

verting from one coordinate system to the other

should he clear:

JC = r cos Q. y=r sin Q. r^ =x'- -'r y- . tan = ^

Polar coordinates are used when the mathematical

operations are simplified by their use. These

conditions are usually apparent from the geometry

involved.

Example 6-8.

Given r=f{6). What is the general expression

for the slope of this function at any point?

A. From our previous work we know the slope of

dy
any function is

dx
This implies the use of rec-

Figure 6-25.—Converting from rectangular to pofar coordinates.

tangular coordinates but our given function is in

polar coordinates. We must utilize the conversion

1 1
dy

equations to calculate -;^ •

dx
B. x = r cos 6

Since r is a function of B let u = r, i) = cos 6 and

J ja- ,C4 1 r (d(uv) dii dv\
dx = d6\n{b) ch 5 —-— = v -;- -\- it ^r \

\ ax (tx ax J

.•.| = §cos0 + r(-sin0)
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C. y=r sin 6

Let u = r,v— sin and dx = dd in iS)

dy dr . .
,

.". -jT= -jT sin c' + r cos I

d8 du

D.

dy dr

dy^de^dd_
dx dx dr

dd le

sin 0+ rcos 6

cos d — r sin 6

Let r'

dd'

dy _r' sin 8+ r cos d

dx r' cos 0— r sin 6

E. Divide bv r' cos 9:

tan0 + -

1
7 tan I

This equation allows us to calculate the slope of

r=f{d) for all d's and r's for which the slope exists.

6-15. CIrcglar Motion

The equation of a circle in polar coordinates is

simply r= constant for the radius is the same
everywhere on the circumference of the circle.

The distance of a point moving in circular motion,

therefore, will remain fixed with respect to the axes

about which it is rotating. We can describe the

velocity and acceleration associated with this

moving point by again utihzing the conversion

formulas given in the previous section.

The velocity Vx along the x axis is given by

dx

dt
and x = r cos 8. This is similar to (5) in ch .5.

Let u = r, v = cos8 and dx = dt in
d(uv) _ du

dx dx

+ u

_dx dr . dd
Tj — -r-= -r-cos 6'+r(— sin 8)^-

dt dt dt

dr
But since r is constant, —r=Q.

dt

. . i'j- = — r sin
dt

The velocity along the y axis is given by —r and y
dt

= r sin 8.

Let u = r. t' = sin 8 and dx = dt in (5) ch 5.

dy dr d8
Vy= -r-=—r?,\n 8-r rcos 8—r

dt dt dt

and again — = 0.
dt

.Vu = r cos
^d8

dt

ddWe measure 8 in radians and ^ will then be in
dt

radians/sec. We assign this quantity the Greek
letter w and call it the angular velocity.

Vs = — roj sin 8 and Vy = rw cos 8

Recalling that i = Vi>'- + Vy- we have

v = '\/r^(i)'- sin- 8 + r^oj- cos^ 8 or

v=y/r^o)^{s\n^ 8 + cos^ 8).

sin^+ cos- 8=\

d8

dt
and is termed the linear

velocity.

Strictly speaking, this equation gives the speed, as

velocity is a vector and must have a direction. The

velocity has a magnitude given by rw and is directed

along a tangent to the circle at the point (r, 8) in

question (fig. 6-26).

Figure 6-26.—Velocity in circular motion.
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We may arrive at expressions for the acceleration

in circular motion by differentiating our expressions

for Vx and Vy.

Vi =—r—r sin d and -;- = U.
dt dt

terms (2) and (5) cancel out; factor (sin^ fl + cos^ 0)

from terms (1) and (4) and terms (3) and (6) and sub-

stitute (sin^ 6 + cos^ Q)=\

Hm-" , (dey . ,

Let l — r—
j
= u, sin d = v and dt = d.x in (5) ch 5 '^^ V'"^ ("T? )

"^'"^
(
j~) which is the expression

djuv) __ du dv

dx dx dx

"''x d^e . ^ de „dd
Qx = —r~~r "TT iV^V — r—r cos f) —r

dt dt^ dt dt

_ d^e (dey
ax =—r —rz sm — r cos o\—r\

dt^ \dtj

do „ jdr „
Vy= r-7r cos and -t-= (J.

Let [r-j-\ = u, cos d=v, and dt = dx in (5) ch 5

/djuv) _ du dv \

\ dx dx dx)

dvy_ d^e a ds . ^de

d^d . /„„
—TT, cos V — r sm d —r
dt- \ dt

a = vcix' + a/

Substituting the expressions for Ox and Uy and

simplifying yields;

(1) (2)

+ ^eos-«y +^(-) eos^«-2.= (-)(-) s.n^cos.

(3) (4)

/dey-\^

^''^'"''(-dijl

(5)

for the total acceleration.

More often the components are utilized as the

total acceleration expression is too cumbersome.

These components are no longer ax and Uy, however,

as these were lost in the derivation process. We
nov*' have the tangential (at) and the radial (a,)

components of the acceleration corresponding to

d'e , (de
respectively.

(-) so that

gential acceleration.

cPe

dt^'

dw
"dt

and is the tan-

2- -^/dev
so

-^'-'fo'-m-
radial acceleration.

that

ro)^ and

du)

the

In the expression for ai the ~- is generally

assigned the Greek letter a and is caUed the angular

acceleration.

at = ra ar = rw'

The equivalent expressions are;

'

dt^'

d(x)
,r—r= ra and

dt

(dey v^

"^=^UJ
=7==—= roj'.

(6)

The tangential acceleration vector is directed

along a tangent to the circle and the radial accelera-

tion vector is directed along a radius of the circles

pointing from the circumference towards the center

of the circle (fig. 6—27).
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Figure 6-27.—Acceleration in circular motion.

Example 6-9.

A particle moves in a circle according to

where 6 is measured in radians and t in seconds.

If the circle is 8 feet in diameter, calculate the

magnitude of the angular velocity (w) linear veloc-

ity (rot), tangential acceleration (ra), and radied

acceleration (rw^) at t = 2 sec.

de
A. The angular velocity is to =

dt

. de^ dist^-t + i)

" dt dt
,= 6t-l

radians

seconds

D. The radial acceleration is ar = ra)^ and at

t =2, &>= 11 rad/sec.

.-. Or =(4 feet) (11 rad/sec I- =484 feet/sec^.

Example 6-10.

(See figure 6-28.) Wheel A is turning according

to ^ = (^—1 v^ith 6 in radians and t in seconds.

Wheel A causes wheel B to move without slipping.

How much greater is the magnitude of the linear

velocity of point P2 with respect to that of point Pi

when t=l second?

A. We calculate the angular velocity of wheel A.

de d{t^- i),
., , ,

a)A=^'— J Jt- and t= i sec.
at at

.". a>^ = 3 rad/sec.

B. We may now calculate the Unear velocity of

Pi located a distance 1..5 feet from the center of

wheel A.

i>i = n a»^ = (1.5 feet) (3 rad/sec) = 4.5 ft/sec

C. Now it is necessary to determine the Hnear

velocity of point C which is the point of contact be-

tween the two wheels. Since there is no slipping

between the wheels, the linear velocity of a point on

the circumference of both wheels is the same.

vc '— r2(iiA — (4 ft) (3 rad/sec) = 12 ft/sec

D. As Vc is common to both wheels, we may now

obtain wb.

and if < = 2 sec

vc =
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And on wheel B, rc = 2 ft

12 ft/sec

2 ft

= 6 rad/sec.

Note another way to calculate wb is to use the

ratio of the diameters involved. This is valid when
the circumferences are in contact and there is no

slipping as in the usual case of two gears.

W.4. Db-^ =-Fr anfJ ^^4 "= 3 rad/sec, Ds = 4 ft, and Z)^ = 8 ft.

D.4a).4 (8) (3)
(Ob-

Db
-= 6 rad/sec.

E. The hnear velocity of point P2 is now obtain-

able. Note that P2 is located 1 foot from the center

of wheel B.

^2 = ^2 Wfl = (1 ft) (6 rad/sec) = 6 ft/sec

Comparing vz and Vi we see that V2 is 6-4.5=1.5

ft/sec greater than v\ at /= 1 second.

Example 6-1 1.

What is the algebraic expression for the angular

velocity (w) of a point that moves in such a manner
that d = e^' tan 3t describes its angular displacement

for all t?

^_dd_ d{e^'tan3t)

dt dt
tan3r^*

dt

2,
_^(tan 3t)

dt

0) = tan Stie^') (2) + e^'lsec^ 3<) (3)

aj = e2'(2tan3f + 3sec2 3f)

6-16. Simple Harmonic Motion

Figure 6-29 shows point P moving about point O
in a circle of radius r. It moves with a constant

angular velocity w with P' indicating the projection

of P on the x axis. The angular displacement meas-

ured counterclockwise from the x axis is indicated

by d and is equal to cut.

We will not concern ourselves with the projection

of P on the y axis, but a similar argument applies

as that for the projection on the x axis.

Notice as P moves about its circular path, the

projection P' moves back and forth on the x axis

so that the Une OP' varies in length between zero

and r. This length is given for any angle by:

x = r cos 6= r cos wt

Figure 6-29.—The movement of P about O.

dx
The Unear velocity of P' is -r or:

dt

_dx _ d(r cos (ot) _
dt dt

= -rw sin oif from (12)

The maximum value of the velocity, disregarding

the sign, is rw which occurs when = 90° or 270°;

that is, when P is directly above or below the center

^-
.

.',. d^x
The linear acceleration of P' is -rir or

dt^

dv

dt'

and since

d'X _ d{— roj sin lot)

' dt'~ It
'

x = r cos (lit.

roj- cos (ot

This equation indicates that the acceleration is

proportional to the displacement. The propor-

tionality constant is — w^ with the negative sign

indicating the acceleration is directed oppositely

to the displacement.

From the equation a=— roi- cos (ot, we see the

maximum value for the acceleration is rw^ dis-

regarding the sign.
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This maximum value occurs at 0=0° and 180° and in particular at f = <i,

or when P is at A or B.

The amount of time that elapses as P moves x = r cos iwtt+ a).

through one complete circle is called the period.

In this time P' will go from A to B and back to A. The initial angular offset (a) is called the phase

We have 'Ztt radians in one circle or 360° of angular angle.

radians
displacement, and the angular velocity is ai

-

2tt

ids

Period = T =— sec per cycle.

The frequency with which P passes through

point A is given by the reciprocal of the period;

Example 6-12.

A body is undergoing simple harmonic motion
with the displacement given by

a; = 4 cos |7r< + — ) feet.

/=—=— cycles/sec.

What is the velocity (V), acceleration {A), and dis-

placement ix) at t = - sec? Determine the phase

angle (a), amplitude (r) of .motion, angular velocity.

In this argument we began at zero time (^ = 0) (w) and period (T).

with P at point A so that x = r cos (ot for any t.

Suppose now we begin with P angularly offset from

the X axis at t = Oin this case, the projection of P
the X axis at t = by some angle say a (fig. 6-30).

At t = in this case, the projection of P on the x

cixis defines a line OP' = r cos a. At any time later

the projection is given by:

x = r cos {(ot + a)

A. We first determine the displacement at t-
1

:t= 4 cos I 'T+ ';t i
= 4 cos^m

3-n-
radians =135° .v = 4 cos 135°

Pff'-f/J

V(t=0)

Fisure 6-30.—Projection of P.

cos 135° =— V 2 so that the displacement x =
2

~(4)( ^J=— 2v2 feet. The negative sign in-

dicates displacement to the left of the origin.

1 dx
B. The velocity at f = T sec is found from -p

4 at

1;= -;-=— 47r sin \TTt +^
dt \ 2

v=— 4n sin I
—

|
= — 477 sin 135°

sin 135°
V2

i that v = — 2tt V2 ft/sec.

The negative sign indicates the velocity is directed

to the left.

1 d-x
C. Find the acceleration at ^ =t second from —rr,

4 dt-
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dt-
= -477-CO> 77/

+

I)-
-477- COS 135°

= (-477^)(-^|) = 27r2V2ft/s

Hence the acceleration is positive and directed to

the right.

D. The general equation for the displacement

with a phase angle is given by

x = r cos ((i)t-\- a).

Comparing x = 4 cos itrt-^^] with the general

form allows us to determine the remaining desired

quantities.

Phase angle = a = - radians

Angular velocity = w = tt radians/sec

Amplitude = r = 4 f

t

277 277

= — ojEin sin wt and

w = 2tt X 10" rad/sec

£,,,= 100 volts

< = 2.5X10"^ seconds

de

di

de

dt'

{- 277 X 10«) (100) sin [(277 X 10'^) (2.5 X lO"^)]

277 X 10«sin(577X 10-1)

sinl577X 10-') = sin |=sin 90° =1

Period = T

Example 6-13.

2 seconds

The electric field at a particular point in space

reaches its maximum value of 100 volts every

microsecond. What is the rate of change of the

electric field at this location 2.5 X 10-' seconds after general terms

its maximum value is reached assuming the field

varies according to simple harmonic motion.

A. We are told that Emnx is reached every 10 '•

second. Hence the period (71 is 10" second.

^ = -277XlO«vohs/sec
dt

The electric field is DECREASING at the rate of

277 X 10" volts/sec.

6-17. LHospital's Rule

In section 5-7 (chapter 5) we discussed limits of

indeterminant forms. We are now prepared to deal

with the indeterminant forms — and ^ •

Let us call the numerator g{x), and the denomi-

g{x)
nator h{x]. Then we have 7—- as the form for which

nix)

we wish to determine the Hmit.

We state L'Hospital's Rule without proof and in

•.w =Y = 27J-X 10« rad/sec

B. At the beginning of the cycle e = E„i,u- so that

the equation must be ol the form

e = Em cos (lit.

Substituting t = does yield e = Emu., since cos

(0)=1.

de
C. W e determine the rate of change of e from —r •

dt

de_ d(E,„ cos top _ „ J (cos (nt) from (4) ch 5

dt dt
'"

dt from (12)

-^ ,. six) . r I t r CX3

If hm -.
—

- IS oi the indeterminant forms -^or-^ ,

.-,. hix)
°^

differentiate the numerator and denominator sep-

arately and evaluate this new limit which will be

equal to the hmit of the original expression. In

equation form:

lim gix) _ Um g'jx)
"~"

hix) "'^"h'ix)

,,. lim s'ix) . • , 1 • 1 • . r
If ,-.,,7-;— IS again of the indeterminant forms

h ix)

or ^ , reapply the rule. The rule holds for finite

and infinite values of a.

Example 6-14.

Determine .-u^ . We recall in section 6-8
x

we used geometric constructions and trigonometric
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relationships to calculate this limit. We found it

necessary to go through these steps in order to

derive the formula for the derivative of sin x.

Now that we developed this formula, a direct ap-

... r I 'II • 1' r. 1 •
l'"i sin X

plication ot L Hospital s Kule gives a^o

lim In X

lim In X _ li

or the form
,

lim 1

2x- 2x-

(I (sin x)

dx

dx

dx

lim cos X

Of course this tool was not available to us in section

6-8.

Example 6-15.

r- 1 lim e-^ + e"-^ —

2

Thii )f the form

lim e-^ + e"-^ — 2 Um
.1 — — X -.

lim
t —

die''
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Example 6-19.

In an RL series circuit the current is given by

i=^(l-eL ). What is the vohage across the

inductor at time ( = -5- ? The source vohage is V,
K

inductance is L, and R is the resistance.

A. The vohage at any time across an inductor is

di
V = L

dt

-fri-m-lV'



CHAPTER 7

INTEGRATION

7-1. Introduction

Chapters 5 and 6 have introduced us to inverse

functions. In example 5—19 chapter 5 we learned

that with every function there is a related inverse

function such as the inverse trigonometric functions

or the inverse exponenticd functions; the latter are

the logarithms.

Just as there are inverse functions, there are also

inverse operations. For example, in mathematics,

subtraction is the inverse of addition, and division

is the inverse of multiphcation. This chapter and

chapter 8 are concerned with the inverse process

of differentiation; INTEGRATION.

The student wiU learn the rules for integrating

the standard forms; they are analogous to the stand-

ard forms of differentiation. Further, he will learn

techniques to transform nonstandard forms to

standard forms which he may then integrate di-

rectly. Along with the pure mechanical manipula-

tions, he will investigate numerous applications in

an attempt to clarify his theory and justify his labor.

Integration is a more difficult process to grasp

than is differentiation. The rules are not as fool-

proof nor as exact. More effort will be required on

the part of the student, but patience wiU be re-

warded by satisfying results.

7-2. Definition of the Integral

Integration is defined as the inverse of differ-

entiation. In other words, we are given the deriva-

tive of some function and our task is to determine

what function we differentiated to acquire the given

derivative. Herein lies the difficulty, for our

ability to "guess" this function is dependent upon

our understanding of the differentiation process.

For this reason a review of the standard forms of

differentiation should be undertaken at this point.

7-3. The Symbol of the Integral

The symbol for the integral is an elongated S, /.

Perhaps this was thought appropriate as integration

can be shown to be the limit of a sum. Hence, the

elongated S comes from the first letter of the word

sum.

7-4. An Interpretation of the Integral

An integral may represent many things. It may
be a physical process or a pure mathematical

process. It may be real or abstract. It may
represent a surface area of some figure, or a plane

area, a volume, or even something being "summed"
in ten-dimensional space. Our interpretation will

be limited however, to more earthly quantities.

Let us investigate the plane area as one interpreta-

tion of the integral.

Current is defined as the net rate at which elec-

trons pass a given cross section of a conductor.

In equation form

._dq
dt

Suppose we are given a situation in which the

current varies uniformly from to 8 amperes in

.5 seconds (fig. 7-1). We wish to determine the

i(amp)

f(sec)
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quantity of charge that passes a given cross section

of the conductor in the 5-second period.

We muhiply both sides of the previous equation

by the differential dt.

i dt = —r dt or dq =

dt
i dt,

and using increments rather than differentials we

get Aq ~ i At. We want to determine Aq and will

say that dq ~ Aq so that Aq=i At to a close enough

approximation.

Looking at the figure we see the curve describing

i=J{t) is a straight hne, so we use an average

value of the current to calculate Aq.

Aq-
2

At (5)

Aq = 20 amp sec = 20 coulombs.

Now we will calculate the plane area shown

shaded in figure 7-2. The area is a triangle and

the formula for the area of a triangle is

bh.

The base, b. is 5 sec. and the height, /?, is 8

amperes.

and

.-. .4 = - (5) (8) = 20 amp • sec.

.4 = 20 coulombs.

The area of the shaded portion beneath the curve

is equal to the charge flowing past a given cross

section of conductor in 5 seconds.

i(amp)

12 3 4 5

Figure 7-2.— Area under i— Kt).

f(sec)

We have actually summed aU the httle areas

representing dq (fig. 7-3) to finally arrive at the

total charge, 9 = 20 coulombs. Notice that the

area of the small element labeled dq, is a rectangle

whose area is given by

dq = i dt

where i in this case represents the average current

during the differential time interval, dt. If we sum

all these elements over any interval of time, we get

q= lidt.

That is, the total charge is equal to the integral of

i dt.

' (amp)

— f(sec)

Figure 7-3.—Shaded area dq.

A more detailed discussion of "the area under the

curve interpretation" of the integral will appear in

chapter eight.

7-5. The Constant of Integration

Ify=.^f=/'W = 2.

Then \2xdx = x'''-.

Then

and dy=2xdx. (dy=f'(x)dx). Then I:

Similarly, y= x^ and dy=Zx'dx

I ?>x-dx = x^.

We may generalize this to \f'(x)dx=f{x)yiheTe

fix) is called the INTEGRAND. This generalized

form must be true since, as we have said, integra-

tion is the inverse of the differentiation process.
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In integration we work with differentials rather

than derivatives so we may restate integration to be

the process of finding the function from the differ-

ential of the function.

The relation

jf'tx)dx=f{x),

indicates a method for verifying each integration.

If we take the differentieil of the function resulting

from the integration, we must obtain the function

which we integrated.

df{x)=f'{x)dx

j
2xdx = X- and d{x^) = 2xdx

I Sx^dx = x^ and d{x^) = 3x-dx

Suppose we perform the integration indicated by

1
2xdx. We obtain x^ as before. However,

dix^) = 2xdx, d{x^ + V2) = 2xdx, d{x^ - 6) = 2xdx, and

in fact d{x^ + C) = 2xdx where C is any constant,

positive or negative.

We ask then, does
j
2xdx= x^, x^ + V2^ x^ — 6, or

x^ + C? Since we may take the differential of ANY

of these functions and arrive at 2xdx, we must con-

clude that they are ALL correct. Therefore, we

choose the most general result, \2xdx= x- + C

which includes all constants.

A statement that follows directly from this result

is that alL functions that differ by any constant have

the same derivative (differential).

We generalize the previous results;

\f'(x)dx=f{x) + C.

C is called, the CONSTANT OF INTEGRATION. It

arises from the fact that any function of the form

fix) + C has the differential /'(.r)£/jc. The constant of

integration may be determined from conditions

specified in each particular problem.

The quantity, fix) + C, is called the indefinite

integral. The name suggests that no particular

value for the integral may be assigned until C is

determined and a value is assigned to fix). The

indefinite integral, even with C determined, is a

function of some variable and thus remains

indefinite.

7-6. Evaluation of the Constant of Integration

The techniques used to evaluate the constant of

integration can best be illustrated by working the

following examples.

Example 7-1.

Find the equation of the curve whose first deriva-

tive is two times the independent variable.

A. Let X be the independent variable.

.-. ~f=f'M = 2x so that dy =f'(x)dx = 2xdx

B. We obtain the desired result by integrating the

expression for dy.

y=
I
dy= \f'{x)dx= \2xdx; y=x- + C

C. d{x- + C) = 2xdx verifying the result of the

integration. We have not obtained a particular

solution; we have obtained only a general solution

as a different curve results for ea<?h value of C.

(See figure 7-4.)

D. If we further specify that x = 0, y=6, we may
obtain a definite value for C and hence a particular

solution.

Figure 7-4.— The family of curves plotted from y=x'+C.
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y= x- + C and when x = 0, y= 6.

.•.6 = + CandC = 6.

The complete solution is the curve described by

y=x^ + 6.

This example provides us with a geometrical

interpretation for the constant of integration. The

general result of the integration yielded x^ + C, the

indefinite integral. When plotted, the resuh was a

family of curves each differing from another curve

by a constant. Thus, each has the same derivative

which was one of our given premises.

We were given additional information, called

INITIAL or BOUNDARY CONDITIONS, from which we

were able to find the particular curve from the family

of curves. We may also describe this procedure

as determining the particular solution from the

general solution.

Example 7-2.

Find the equation for the quantity of charge de-

livered to the plate circuit of an electron tube in

which the equation of the plate current is i = 3t^.

At t = the charge on the plate due to a plate ca-

pacitor is 2 X 10 ""^ coulomb.

dq coulombs
A. 1=—,

at sec

We form the expression for the differential of

ch2irge, dq. dq = -j- dt = idt

The variable of integration is t, indicated by dt.

This requires that we obtain i as a function of t be-

fore we may integrate. We are given this informa-

tion, i = 3f^

.'q= \dq= \idt= ISt^dt and q = t^+C which is

the general solution.

B. We have the initial condition from which we

may calculate the constant of integration. When
t = 0, C = 2 microcoulombs (2x10-* coulombs).

.-. 2 microcoulombs = + C and C = 2 micro-

coulombs which is the desired result.

The constant of integration in this example rep-

resents the initial charge retained due to a plate

capacitor. This provides us with a PHYSICAL

INTERPRETATION, for the constant of integration

since charge is a physical quantity.

7-7. The Definite Integral

So far we have dealt solely with the indefinite

integrals. We know that the indefinite integral has

the general form \f'{x)dx=f{x)-\-C.

There are two identifying characteristics;

(1) A constant of integration is required to be

added with each integration and

(2) the result of the integration is a function of a

variable and has no definite value until a

value is assigned this variable. This assumes

the constant of integration has been
determined.

We now investigate the form and properties of

the DEFINITE INTEGRAL. As the name impHes, it

has a definite value AND THUS IS A NUMBER INDE-

PENDENT OF ANY VARIABLE.

The definite integral I f'{x)dx, is read, "The

integral from a to 6 of f'{x)dx."

The letter 6 is called the upper limit and a, the

lower Umit of the integral. These limits have

nothing to do with the limits of a function as de-

scribed in chapter five. Rather, they are the limits

of the region over which we are integrating /'(a;)<it.

As indicated earlier, this region may be a line seg-

ment, an area, a volume, time, or any other quantity.

The integral is evaluated in the following manner;

rf'{x)dx=f{b) + C-[fia) + C]=f{b)-f{a)

Notice that the constant of integration is elimi-

nated when evaluating a definite integral. We see

that the result is a number completely independent

of any variable. The number is the difference

between the two numbers fib] and f(a). We sub-

tract the function evaluated at the lower limit from

the function evaluated at the upper limit.

We may illustrate the definite integral is inde-

pendent of any variable with an example.

Example 7-3.

Evaluate the definite int

that it is the same as the inte

that the definite integral is independent of x and t.

rx=2
egral I 2xdx and show

rr=2

egral I 2tdt showing
J 1=1
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2xdx=^\ =4- 1=3 and
J x=\ |l

rt=z
I

2

21(11=^1 =4- 1=3.
J '=1

I
1

Therefore, this definite integral equals the NUM-

BER 3.

We normally oniit the notation for the variable on

the integral symbol and simply write

= I 2xdp = X^\ --24

Ixdx^x^ = 4- 1=3.

However, the notation may be essential to clearly

indicate which variable we mean if more than one

is included under the integral sign.

= / 2xclx + / 2xdx -^\ 2xd

Example 7-4.

Evaluate the integral q = I idt if i = 3«-

\^ e include the notation for the variable in this

case to indicate that we are interested in the region definite integral (fig. 7-5)

involving / and not ('.

.-. g = I idt =
I

Zt-dt

q =A =27-1 = 26
|]

Two general properties of the definite integral

should be understood.

(1) Interchanging the limits of an integral changes

the sign in front of the integral.

12 3 5

= 3 +5 + 16 = 24

Figure 7-5.—Example 7-6.

Example 7-6.

Illustrate the second general property of the

J
r(x)dx =-\ f'{x)dx

Example 7-5.

Illustrate the first general property of the definite

integral.

I 2xdx = ~ I 'Ixdx

4-l=-l+4
3= 3

(2) The integral over any region may be divided

into the sum of any number of integrals each cover-

ing a portion of the entire region.

J^
f'(x)dx = jy'(x}dx + j'f'{x)dx

I

'2xdx = I 2xdx + I

' 2xdx + I "2xdx

x^ =x^ +^ -fjr-

25-l = (4-l) + (9-4) + (25-9)
24 =3+5+16
24= 24

7-8. Rules for Integrating Standard Forms

We recall that the verification of integration lies

in differentiating the result of integration to obtain

the integrand. Therefore, ff'{x)dx=f[x) and veri-

fying we have

d \flx}] = f'ix) or using

dx

differentials, df{x)=f'(x)dx.

The derivations of the rules for integrating

standard forms consist of finding the function whose
differential is one of the standard forms.

The integrals for a number of the standard forms

are listed here for easy reference. Derivations are

given along with examples of a few of the forms.

These rules must be memorized.

The Standard Forms

The letters u, v, and w are functions of x and C
is a constant
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1. Sdu = u + C
The integral of a sum (difference) is equal to the

sum (difference) of the integrals.

2. j{du + dv + dw)= Jdii + Jdv+ Jdw = u + v

+ W + C
The integral of the product of a constant and

a variable is equal to the product of the constant

and the integral of the variable. That is, a con-

stant may be moved across the integral sign with-

out changing the value of the problem,

problem.

3. / adu = a f du = au + C

4. u"du =—-r+C n9^-l
J n+1

6. la"du=~+C
J In a

7. / e"du = e" + C
8. / sin «<fu = — cos u +

C

9. / cos u du = sin u+ C
10. / sec^ u du = Ian u + C
11. / csc^ u (fji = — cot u +C
12. / sec u tan u du = sec u + C
13. / CSC u cot u du =— CSC u+C
14. f ta.n u du =— In cos u + C = In sec u + C
15. / cot u du = In sin u+C

= —In esc u + C
16. / sec u du = ln (sec u + tan u) + C
17./ esc u du = ~ln (esc u + cot u)+ C

f du . _ u

c

18

19. f ^" =ltan-'i^
J a^ + u~ a a

20. f
—

J au

du
In (au + b)+C

21. I
-^^-^=— In {au' + b) + C

J au' + b 2a

22./
au'^ + b

„V-j + C

26. \ {au- + b)"udu= —7-;— +C; ny^—l
2a n+1

24.

25.

26.

I sin a udu = — - cos au + C

I {au-

I cos a u

' + brdu --

du =

1

'a(n.+ l)

1 .

+ C

7-9 Derivations of the Rules (1-4)

1. |(^u = u + C

Proof: d(u + C) = du

:.
I

f/z/ = « + C

2.
I

(c/« + (/i; + (/w) =
I

f/u +
I

(^i; +
j
du;

Proof: d{u + v + w + C) = du + dv + dw

:. \{du + dv + div) = u + v + w+ C

From rule 1 we see that

I

du+
I

dv+
I

dw = {u + Ci) + {v + C2)

+ (w + Ci)

LetC = Ci + C.. + C3

:. \ du+ \ dv+ \ dw = u + v + w+C

We have then

Udu + dv + dw) = I du+ I dv

+
J

dw = u + v + w + C

3.
J

adu = a I du = au + C

Proof: d(au + C) = a<f(o + Ci) = adu (aCi = C)

.'. I ac^u = a (/// = au + C

4. u"du =——r-

J n+ I

+C n#-1

Proof: d (—r^ + C )
= r^— du = u"du

,/..,

n+1

flfH=-^+C
n + 1

n+1

We may not use this rule for n = — 1 as the

denominator, n+1, would be zero and division

by zero is undefined

Example 7-6.

Evaluate the following integrals utilizing rules 1

through 4.
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1. (x'dx =
Yp[

+ C = '^+C (Rule

2. j 3dx = 3x + C (Rules 1 and 3)

3. \2x'i-'dx =^ + C =^
^ -+l -

2 2

+ C= -^^|

—

\-C (Rules 3 and 4)

^- + C = -- + C (Rules 3 and 4)
-

1

X

4. — (fx = 3 j: -dx =—.,
, ,
+ C

Jx- J -2+1

r ^7/2 y5/4

5. l{x^l-' + x''')dx =^-h^+C
2 4

2,^7/2 4^5/4
+^^+ C (Rules 2 and4)

^/ (3x2 + 3a:)"-(6:t: + 3Wa;

At first sight example (6) looks unlike any forms

covered to this point. However, suppose we let

u = 3x- + 3x and du = (6x + 3)dx.

We then have the form I u"du with n = —

fore, using rule 4 we integrate.

ii3x' + 3;c)'^^(6x + 3)dx = '^^'
t

^^''^''
+ C

There-

1

:+l

. 2(3x'' + 3xf' + C

'/ {3x'' + 3x}'i-(2x+l)dx

Again we let u = 3x^ + 3x so that du = {6x + 3)dx.

However, we don't have du in this case, but if we

multiply (2x-\-\)dx by 3 we get {6x + 3)dx which is

du.

Rule 3 states we may move a constant back and

forth across an integral sign without altering the

evaluation. Therefore, let us multiply our integral

by|=l.

^{{3x''- + 3xylH2x+\)dx

We choose to take the 3 in the numerator inside

the integral sign and multiply it by (2jt+l) and

leave the 3 in the denominator outside of the

integral. By rule 3, we have not altered the

problem.

1/(3.^ + 3xV!H(,x-\-3)dx

We now have the form a\u du with a = -,u = 3x'^

+ 3x, and du=((ix + 3)dx. We may integrate

directly using rule 4.

1/(3.^ + 3xY'-(6x + 3)dx--
\ (3x'' + 3xfi'

3 3

2

^
^^ 2{3x- + 3xfi^

^ ^

xdx

(^2 + 7)^

Let u — x^ + 1 and then du = 2xdx. The numera-

tor would be du if we multiphed it by 2. If we

multiply by 2, we must also divide by 2 so as not to

change the value. We now have the form

"du with a = -, u = x^ + 7, du = 2xdx,

id n=~2

a I u"c

and n =

1 r 2xdx 1 r, ..
, 7,-.o . iui+71:

+ c-
1

2(^:^ + 7)
+ c

We may prove the answers to the previous eight

problems by differentiating. In so doing we must

obtain the integrand of the original integral. For

example in problem 1,

d_(x^

dx\3
+ C = t^hich
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./.7. e"du = e" + Cis the integrand. The reader should prove the

seven remaining problems in a hke manner. It

would be well to remember that any integration may
Proof: die" + C) = e"du

be verified by differentiation.

Exercise 7-1. :. \ e''du = e'' + C

Perform the following integrations and prove the

results by differentiation. 8.
J

sin u du =— cos u + C

1 \ {ax + b)dx Proof: diCos u + C) = — sin u du

J so that c/(— Cos u + C) =+ sin « tfu

2. j{x + x'- + x^)dx .:( sm udu =- cos u + C

3. I 2x^'^dx 9.
I

cos u Ju = sin u + C

5. {(.^ +1/(2x3+1)^

7-10. Derivation of Roles (5-13)

Proof: d(sin u + C) = cos udu

cos u du = sin u + C

10. I sec''' u du = tan u + C

Proof: d{tan u + C) = sec^ u du

:. I sec^ u du = tan u + C
We continue the derivation of the integration

rules with rule 5. 11. csc^ u rfu = — cot u + C

[ du = ln u + C Proof: d(cot u + C) = — sec^ u du
^-

j
~^ so that d{— cot u + C) = csc'^ u du

Proof d{lnu + C) = ]_du -••

J
Csc^ u Ju = - cot u + C

u r

f du = ln u + C 12. I sec u tan u cfu = sec u + C

Proof: d(sec u + C) = sec u tan u du

^-
J

""'^""7^'^^
.-.

f
sec u tan u du = sec u + C

Proof: d(a" + C) = a" In a du lo f n . j -l/"-'
13. Csc u cot u au = — CSC u + C

so that
J

a"ln a du = a" + Ci Proof rflcsc u + C) =- csc u cot u rfu

r, • ; ,„„, ,„„ Uo,r» /„ ^ so that d(—csc u + C) = csc u cot u du
But smce /n a is a constant, we nave In a ^ '

f , , , ^ .'.
I
csc u cot u <fu =— csc u + C

a"au = a" + Ci J

Transposing, I a"du — -. h
/" a Example 7-7.

Let j~~ —C Evaluate the following integrals.

a''du= -. l-C 1. sin
J In a J

2x dx
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We have u = 2jt so that du = 2dx. We muUiply (The constant Ci is incorporated with C.)

the integral by - to acquire the form | sin u du.I sin u

|/(sin:. .....i2x)2dx = -(-cos2x) + C

=^-cos2x+C (Rule 8)

I. ie^x' dx

Let u = x', du = Zx-dx. We seek the form I e"(/u

3
so that we multiply the integral by -

.

^U

w
Idx

e'^'Zx'' dx = -:^+C (Rule 7)

2a; + 3

Let u = 2x + i, du = 2dx

:. using rule 5

{-^;^=ln{2x+ d,) + C

'/

2x + 3

6x^ - 4j: + 2 rfj:

3;t + l

This integral presents a new problem for the

power of X that appears in the numerator is greater

than the power in the denominator. We may gen-

eralize the procedure to follow with the statement:

Whenever we see an integral in which the variable

appears to a higher power in the numerator than in

the denominator, we must divide the numerator by

the denominator and integrate the result.

4
6x2-4x + 2H-3a:+l=2jc-2 +

3x + l

/(^^-2+3ITtV^=/2^'^^-/2'^-*^/3!tT

= x-^-2x + -ln(?,x^-\) + C

(Rules 2, 4, and 5)

For

f 4rfr 4 f Mx 4 ,1.,/-

J 3^TT
= 3j 3^+1 = 3'" ^^"+^' + ^'

./,5.
I
cos -/ dt

2. 2dt
u=-t,du=——

(2 5 f2 2
.:
j
CO.-1 dt = -

j -cos -tdt

5.2= ^sm-t + C

6.
J
s,ec^3xdx = ^l3sec''ixdx

T tan 3x + C

7. llxb-^'dx

u = x'-, du = 2x dx

1(2 1 {.-z\-lx b^^ dx=- \ 2xb^^ dx

7 6-^"

= -.—^+C(Rule6)
2 Inb

I
CSC - cot - dt

t , dtu=-.da=-

.•.2/|(csc^cot0rf. = -2csc| + C

9. I cos^ a: sin j: dx

Let u = cos X, du =— sin x dx and n = 3.

We have the form I u''du except for the nega-

tive sign which we place as follows:

/<—
I (cos^;c) (sin:<: <i;t) = \-C

10. tan^ 2x sec^ 2x dx

It = tan 2x, du =sec- 2x d(2x) = (sec^ 2x) (2 dx)

from formulas (13) Ch. 6 and (10) Ch. 5.

w 2 tan^ 2x sec^ 2x dx is of the form

du

W
a

j
u" I

. 2\ain'^2xsec^2xdx =— \-C
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Exercise 7-2.

Perform the following integrations and verify

the results by differentiation.

1. K^'dt

dx2. X cos -^ ^

3 I"

'"^^

4. I sin^ 3;e cos ?ixdx

5. dx

J I-'

6. j sec^ X e'"" ' dx

7. fArcsc^U^-Dc;:^

8. sec X tan « e''^'^ ' dx

7-11. Derivation of the Rules (14-19)

We conclude the derivations of the rules for inte-

gration with rules 14 through 19.

14. I tan zi(fu=— /ra cos u + C = /n sec u + C
ida

/f

tan II

f f sin udi
rroot: tan uau =

J J cos u

This last integral is almost of the form I

—

for if 11 = cos u, du =— sin udu. We need

introduce only the minus sign to obtain

dv

i
sin udu = — In cos u + C

Another form may be acquired by a slightly

different approach.

r , f sec u tan udu / , . , ,
sec u

tanudu= — multiply by
J J sec u \ sec u

lis liThis last integral is immediately of the

dv
form

I
— with v = sec u and dv = sec u tan

sec u tan udu
/^ - = In sec u + C

1.5. cot wt/u = ln sin u + C = — /n esc u + C

Proof: cot utfu= -^ and immediately
/ J sin u

Ifwe have

i
udu = //) sin u + C

We proceed to the second form.

CSC u cot udu
I cot udu = —

j

and
CSC u

In CSC u + C

16.
I

sec udu = In

Proof: Multiply by

(sec u + tan u)+C

sec u+tan u

sec u+tan u

(sec^ u + sec u tan u)du

so that we get

sec u + tan u
This integral is

of the form — for if t; = sec u + tan u,

J V

dv = (sec u tan + sec^ u)(/u

(sec^ u + sec u tan u)c?u

J' sec u + tan u

In (sec u+tan u) + C

17. CSC udu =— In (esc u + cot u) + C

Proof: Following similar steps as in the proof of

CSC u + cot u

CSC u

roof: Fo

rule 16: multiply csc udu by
,

J csc u + cot u

r /"(csc u + cot u) csc udu
I csc udu =

csc u + cot u

csc^ udu + cot u csc udu)

csc u + cot u

The integral is now in the form

dv

-I-

l'-

-= In v + C

^here f = csc u + cot u and

dv = d (csc u) + d (cot u)

=— csc u cot udu + ( — csc^ udu)

I csc udu = — In (csc u+ cot u)
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18. f -^^=sin-'^+C

Proof: We know d(s\n ' 11)=
dv

Vl-!;2

Therefore, rf sin-'- + C
'(:-)

VL-/uV
(a) V^^

/a^ - u^ Va^ - u^

[ du . _, u .^

J a- + U'' a a

Proof: We know (f (tan"' I') = 7——j so that
1 + V-

, ,1 , u\ 1 \a' la du
d\-ti

a) a\ + (u\~ a d^ + u'- a- + u'-

tan-l-+ Cf _du_^l
'

J a'- + u'^ a

Example 7-8.

Carry out the indicated integrations.

dx
•/ V4-jc2

This is of the form

and du = dx.

f dx

J Va--u

f
dx

with a = 2. u = X.

sin '- + C
2

2. I tan-c/jt

" — g . (fu— -f-and we have the form tan udu.

'] tan|£?j: = 9j-tan|c/j:

=~9 In COS-+ C

-9 In sec-+ C

'-/ CSC 2ddd

u = 26, de = 2de

.-.

I I

2 CSC 2dde = - 1 /n (esc 29 + cot 26) + C

r 2xdx

J Q + ^t"

/:
This is of the form |

—
;ri—T = -tan"'-+C

a* + u- a a

u = x^, du = 2xdx, and a = 3

/ 2j;ct<: 1 . X-
, ^

^^:^= -arctan-+C

Notice that rules 18 and 19 contain two terms in

the denominator; rule 18 has the difference between

two squares (a^ — u^) and rule 19 has the sum of two

squares (a^ + u^). There are cases where three

terms are contained in the denominator, but may be

converted to the sum or difference of two squares by

completing the square. (See NavPers 10071

revised.)

J V5 + 4x-.r2^J

dx

\/5 + 4x-x^^J V5-.x:2-t-4jt: + 4-4

=/
dx

V9-(x-2)2

This is of the form /" =sin-' -+C with
J Va- — u-

u = x — 2,du = dx, and a = 3.

dx x — 2/
y/9-{x-2f

dx f dx

= sin ' o +C

^" '^+ x'' + x jl+^ + x^ + x ]l + (^+|

dx

This is of the form
f du ^1
J a^ + u^ a

tan-" -+C

Let u = x + -, du = dx, and a = 1

dx

n+i,+lY="'"-l'+2+<^M
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7-12. Integrating Powers of Trigonometric Functions .-. Integrating directly we get

Integrating powers of trigonometric functions

require special techniques. Let us first investigate

the general form sin" u cos" u du.

Case 1. Either p or q or both are positive odd

integers.

Example 7-9.

sin^ u cos^ a du p = 3,q = 2

I sin^ u cos- udu= \ sin- u sin u cos- u

(Recall that sin- u = 1 — cos^ u)

=
j

(1 — cos^ u) cos^ u sin u du

sin-'M „ sxWu ,
sm' u

, ^

Similar techniques hold if both p and q are posi-

tive and even.

Case 2. Both p and q are positive and even

integers. We will utiUze the following trigono-

metric identities from chapter 1.

1 o
A. sin ucos u = -^smz u

du

• 2 11 9sm^ u=-— -coszu

cos^ "~9 +'^cos zu

Example 7-11.

j
sin^ u cos^ u

= I (cos- u — CDS'* u) sin u </u

I
(cos- u — cos^ u) sin u du Using formulas A and B we obtain

= I cos^ u sin u du— \ cos'' u sin u du I sin- u cos- u <fu=
j
-sin-2u(fu = - I s,\n^2udu

The last two integrals are of the form
J
u"du =5] (g- 2^08 4u )«/« =

-
J c'u-gj cos 4m (iu

except for the - sign for d(cos u) = -sin u du.
(^.^itipiy (h^ j^gt term by ^ to convert to the stand-

.-. — cos2u(— sin «£?«) — (— ) cos'' u(— sin udu)
^ _ cos^ u

,
cos^ u .^~"

3 ^ 5 ^^

Example 7-10.

I

sin^ u cos^ u <fu p = 2,q = 5

sin^ u cos^ udu= sin^ u cos^ u cos u du

=
J

sin^ u (1 — sin- uY cos u du

(Recall cos^ u= 1 — sin^ u)

= (sin^ u — 2 sin'' u + sin** u) cos u du

Each is now of the form «"</« for

d(sin u) = cos u du

ard form
j
cos u du = sin u

(cos 4u) {Mu)

-— —- sin 4u + C
8 32

Example 7-12.

; du
j
sin^ u cos''" '

Rearranging we acquire

I

(sin^ u cos^ «) cos^ u du. Using formulas (A)

and (C),

-
I sin^2«(-+ -cos 2ujdu

= - sin^ 2u du+-x I sin- 2u cos 2u du
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Apply formula (B) to the first term.

= -
I (

9
~

9 cos 4u \ du + -
I sin- 2u cos 2u du

=—
I

du——-- I (cos 4u) (4(fu)

+ -•- \{?,m^2u)(co&2u){2du)

ji sin^2u sin^2M „

16 64~ 48

We may be confronted with the problem of in-

tegrating the products sin p x cos q x, sin p x sin

q X, or cos p x cos q x. These forms may be handled

by using the following formulas from chapter 1.

1

'2

E. sin pjf sin qx = - { cos \Sp — q)x\— cos [ (p + 9)a:] }

F. cos px cos qx =

Example 7-13

sin 3x cos 2x dx

cos [(p+9)jr]+cos {(p-q)x'\]

Using formula D we obtain,

-
I (sin 5;t + sinx)(/x = -

I s,m^xdx + — imxdx

Example 7-14.

I cos 5jr cos 3;c dx

Using formula F,

/' ; COS ix dx + —\ I

sin 8j:
,
sin 2x

We have dealt with only the sine and cosine

functions in introducing the techniques used to

integrate powers of trigonometric functions and

products of trigonometric functions with different

angular expressions. The reader is encouraged

to consult more detailed texts on the integral

calculus to learn the techniques associated with the

remainder of the trigonometric functions.

Exercise 7-3.

Evaluate the following integrals. Prove the

results correct by differentiation.

1 . sec 2x dx

3./ ?>eco\2e^de

4.
I
sin^ 2x cos^ 2x dx

dx

\

sin

U-^x + x""

x'^ tan 3.r^ dx

Ix
2 cos-rfx

8. cos^ 2x sin 2x dx
\

sin

J ^bx--x''

Zx cos^ ix dx

xdx
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CHAPTER 8

INTEGRATION TECHNIQUES

8-1. Introduction

The previous chapter has provided us with the

rules to integrate a limited number of expressions.

We call these expressions the standard forms.

This chapter is intended to enable us to transform

and reduce many nonstandard forms to the standard

and thus integrate a greater variety of forms. Al-

though other techniques are available, we will hmit

our development to four basic techniques; integra-

tion by parts, algebraic substitution, trigonometric

substitution, and partial fractions.

8-2. Integration by Parts

The rule for finding the differential of the product

of two functions, u and v, is

d(uv) = udi'+ I'du.

Rearranging we obtain

udv = d{uv) — vdu.

We integrate this last expression;

J

udv= I d(uv)— I vdu

and since

i df=fA d{uv) = uv. (/denotes
J J a function

.'. I udv = uv— I vdu.
of any

variables)

This is the fundamental formula for integration

by parts. (We have omitted the constant of integra-

tion arising from \d{uv) for the moment. We will

include it in the constant resulting from evaluating

vdu.)
/

The great value of the integration by parts

formula arises from the fact that while we wish to

evaluate the integral, udv, it may he accomplished

by evaluating a different integral, I vdu. If I udv

is difficult to evaluate, proper selection of u and dv

may result in the integral, I vdu, being less difficult.

We now solve several examples to illustrate the

general procedure, and then list guidelines for

selecting u and dv.

Example 8-1.

Using the technique of integration by parts,

evaluate the following integrals.

1. \ X sin X dx

Let u = X and dv = sin x dx. Then du = dx and

ii=— cos x. (We omit the constant of integration

until the final integration is completed.)

The formula is ^ ^

I udv = uv— I vdu.

Substituting

J

X sin v dx = — x cos x— I —cos x dx

=— x cos X + sin X + C

dx

2. llnxdx

Let u = In X and dv = dx. Then du = ^^ and v = x.
X

Substituting in the formula immediately gives

dx
\ln X dx = x In X— I »

= xlnx — x-\-C

= x(lnx-\) + C

\xln x dx

dx
Let II = In X and dv = x dx. Then du =— and v= :^
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I X lnxdx = '^ nx _ ^ \ e''-^ cos nxdx = - e''-' ii\nnx— \ - e'''' sin nx dx
J 2 J 2 x J n J n

_ x^lnx x"^ „ ,

2 4 Factor out- from the last integral and evaluate this
n

1\ ^_ integral in turn by parts.

Let u = e''-^ and d

and v = cos nx.

x^ / 1\ integral in turn by parts.

^'2\" ^~2/ ^ Let « = e''-^ and dv = sin nx dx. Then dit = be''-^dx

e*"-^ cos nx dx

4. sec-' tdt

Let « = sec t and rff = sec^ / dt. Then (/« = sec t

tantrftandi'= tan<. B. I e^Jsin n:»:c^;«;= c*-^ cos nx
J «

sec^ t dt = sec < tan < — I sec t tan^ t dt —
\

} } in
But tan^ t = sec- f — 1 so that

I sec^ f dt = sec t tan ? — I sec f (sec^ /— \)dt

= sec t tan / — I sec'' ? (// + I sec / dt

Solve the equation for
j

see'* t af,

2( secHdt = sectlant + ln{sect + tsint) + Ct
- (- - e"-' cos nx dx

Substitute this result into our first integration,

equation A;

r , J e*-^ . bf

J n n L

1
- cos nx

e"' .
,

b ,=— sin nx H—:: e"-^ cos nx

I

sec'' t dt = ^ [sec r tan / + In (sec ? + tan t)] + C

r + TT I
~ ;;

^*"^ cos n.r t/.r

Where ^=C

.5. xe»-'dx

=— sin nx H—:; e'"' cos nx

Let u = X and dv = e"-^ dx. Then Ju = (^a and j; -^ j
«""' cos nx dx

b

f bjrj.^^^- i— d
Transpose ^ I e*-^ cos nx c^x and factor I e*-^ cos

J
^^

'' b } b "" „^ .

nxdx:

rr + C I e*-^ cos nx dx -\—r I e*-^ cos nx rfx

b V b

l\ e"-'' .
,
be"-"+ <^ = sin nx + —=— cos nx

-i
6. e''^ cos nx (fx

/ 6^\ e*-^ fee*''
1 +^ e**-^ cos nx dx = sin nx + —5— cos nx + C

\ n^l n n^

Let u = e''-'' and dv =cos nx (fx. Then du = he'"dx

and v = - sin nx. 1 +1 . J , ,

/'

sin nx H— cos nx
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— SI
n \

sin nx + - cos nx
Replace z by its equivalent (S+r)**.

n^ + b-
-+C

ne"-^!sin nx + - cos nx

e*'^ (n sin nx + b cos «;«:)

In each of the preceding problems, the integra-

tion depended upon the proper selection of u and

dv. The following suggestions should be of assist-

ance in selecting u and dv, although the particular

problem may cause you to vary your choice.

a. Since w^e must integrate dv to obtain v, the

selection for dv must be more easily integrable.

b. The differential dx, must be contained in the

expression for dv.

c. Select u so that du is a simpler expression.

8-3. Integration by Algebraic Substitution

In many problems integrals containing the com-

bination (a +6x"')' will occur. Further difficulties

occur if this combination is multiplied by a power

. r -
.

of X. The general form is I x" {a + bx"')'' dx with

p and q restricted to integers.

The substitution z ={a + bx'")'' will generally re-

duce the problem to a more readily integrable form.

The following examples wiU clarify the discussion.

Example 8-2.

Evaluate the following integrals using algebraic

substitution.

./« (.3 + x)'* dx

Comparing this problem with the general form we

see that n=l, m = l,p=l, and q = 2.

Let 2 = (3 + x) * from which x = z^ — 3 and dx
= 2zdz.

Substituting in the original expression,

.-. i x{3 + x)'^ dx=\ {z~-3]{z)2zdz

= I {2z^~6z^)dz

2z^

.../«(3 + x)'i- dx = ^(3 + xfl^ - 2 (3 + xfi^ + C

2. xm + x^'fi'dx

Let 2 = (4 + x^y^ so that (4 + jc2)2/3 =z2.

Solve for x;

x^ = z^ — 4 and

x = (z^-4.yi^

From this last equation we obtain

;j3 = (23_ 4)3/2

Differentiating the expression x^ =2^ — 4,

2xdx = 3z^dz

dx =
iz^dz

2^

Substituting x = (2''— 4)"^ in the above equation,

_ Sz^dz

2(z3-4)»/2

Substituting x^ = (z^ — 4)^'-
, (4 + x^)^'^ = z^ and

dx=
,j 3_j^u/2 in tli^ original integral.
2(23-4)"-'

f :«r3 (4 + ;^2)2/3 ^^ = r (^3 _ 4)3/2 ,^2) _^5if

=11 (23 -4) (22)32^^2

=
1
[(32^-122^)^2

3z^dz

4)>«

/32» 122^\

U 5 /
+ c.

But 2 = (4 + a:2)"-' so that

-f.3,4
+,2)2/3 ,_3(4 +xT^_6(4^^^^

16

'l,^
dx

i + x^l*

Let 2 =(3 + xV' and 2^ =(3 + x^
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Solve for x;

X =2'' — 3 and

dx^iz^dz.

J (3 + xfi* J

(z^-3)2 4z3(fz

= 4(z^-3)2<f2

and since 2= (3 + x)"'', we have

(S+x)*'-* 6(3 + x)5'^

J (3 + x)3'-' L

+ 9(3 + x)"^l-

8-4. Integration by Trigonometric Substitution

When radicals of the form Va^ — u- or Vu-± a^

appear, we may usually simplify the integral by

trigonometric substitution. In most cases the

proper substitution suggested below will remove

the radical and thus enable us to integrate.

1. If Va^ — u^ appears, substitute u = a sin 6.

Va^ — u^ = Va^ — a^sin^fl= aVl — sin^0=a cos 6

2. If vu^ + a^ appears, substitute u = a tan 6.

Vu^ + a^^\/aHan^e + a^ = aVtein-d+l = a sec e

3. If V«^ — a^ appears, substitute u = a sec 6.

\/u^-a^ = \/aHec^e-a^ = a\/sec-d-l = atane

The trigonometric substitution method of solving

integrals is simphfied if we accompany our sub-

stitution with a right triangle. For instance, sup-

pose we let u = a sin 6. We may rearrange this

equation to yield

Figure 8-1 is the triangle with sin & — ^- The

remaining side is labeled va^ — u'^ . The following

example will indicate the utiHzation of the triangle.

Figure 8-1.—sin fl=

Example 8-3.

Integrate the given problems using trigonometric

substitution.

•

J v^
x'^dx

9x2

We have a = 2 and u = 3x so that the substitution

2
3x = 2 sin 6 is appropriate. Hence x = -

4 2
X'^ =- sin- 0, and dx= - cos 6 dd.

in e.

The accompanying triangle with all sides properly

labeled is shown in figure 8—2.

•J vT
dx

9x2

4 2
- sin^ d T cos Odd

V 4-4sin^^

sin^ d cos ddd=±{
27 J V cos^e

4 r=~
I sin^ Bd6 and since

sin^ = -— - cos 26, we have

J V4-9x2 27j \2 2 /
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'J V^V3 + 4x2
dx-

-y^ sec^ 6> de

V3 + Stance

^ sec2 dQ
2

'^4-9X^

Fisure 8-2.—e=sin-
3x

We see from figure 8-2 that 6 is the angle whose

3x 3x
sine is — or 0=sin"' — • Identities give us sin 26

= 2 sin d cos and again from the figure we see sin d

VSsecfl

= -z I sec Odd

This is of the form of formida (16) chapter 7:

I sec u = 1« (sec u + tan u) + C

4/ ŝeed do = ^ In (sec + tan 0) + C

3x , „ V4-9a;2=— and cos t^
= From figure 8-3 we find that

Finally,

f x^dx 4 ri . ,3x /1\ /6x\ /Vi-9x^\'\

I sin -9^

1 ^ VS + 'ix^

COS 6 VS

\nd=—in

Finally

The use of the accompanying figure (triangle) is

well illustrated by this problem.

J
V^ •4x2 ^^

J V3T4^ 2 V Vs V3/

r (ix

J xV 16^-9Examination shows that a = V3 and u = 2x. The

proper substitution is 2:t = Vs tan 0, Figure 8-3 is Inspection reveals a = 3 and u = 4 Vx. We let

the accompanying triangle. For substitution into 4 V^ = 3 sec 6» and the triangle iUustrating this is

the original integral we have

;c= —r-tan 6* and

V3
dx =^SGC^d dd.

given in figure 8-4.

{JT4X^

v X = - sec Q
4

9
x= rr2 sec^ Q SO that

lo

9
dx = - sec sec tan Odd or

dx = — sec^ tan 0c?0.

^A-

/: dx

y/\bx-9

- sec^ tan ddd

16'
:2 0V9l 0-9

^( 2tanj£^^2r^^
j3Vsec2 0-l 3J

Figure 8-3.-Sec e=^-^^.
V3

=-0+ C
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^l6X-9

Figure 8-4.—9=sec~«cc ' —
3

Figure 8-4 tells us that Q = sec ' —-—

f dx 2 ,4VJ,^
;

=-sec ' l-C

J .xVl6.v-9 3 3

8-5. Integration by Use of Partial Fractions

The techniques for forming partial fractions

from proper or improper fractions of the form

is thoroughly dealt with in NavPers 10071. In

this particular case,/(x) and ^x) are polynominals in

the independent variable, x. Until the student has

mastered this material, it would be of little value for

him to proceed with the work in this section.

Example 8-4.

Carry out the following integrations using the

partial fraction resolution techniques.

r (3x - 2<^)dx

We first factor x^-\-Zx- 10 into {x + 5) U - 2) thus

obtaining the denominator as the product of two real

linear factors, both different. We now proceed to

resolve the integrand into partial fractions.

3JC-20
: + B

that
U + 5)U-2) A- + 5 x-2

3j«:-20 = /1U-2) + B(.»: + 5)

Let :c = 2, then, - 14 = 7B and B = - 2.

Let:«; = — 5, then, — 35 =— 7^ and .4 = 5.

3;t-20 5 2

Thus we integrate,

f {?,x-mdx _ [ Sdx r 2dx

Jx2 + 3.v-10 J ;c + 5 ] x~2
= Sln(x

= /,

5)-2/nU-

+ c

-2) + C

r (x3 + 5.T- + 2,x- 5)dx

J U+ 1)2^ + 3)2

We note that the factors in the denominator of

this integrand are linear, but repeated. Resolving

the integrand into partial fractions we obtain

{x+\)'{x + 3f

A

'{x+\r + 3)2 (j + 3l

and equating numerators once the common de-

nominator is formed on the right

r^ + Sir + 3x - 5 =A(x + 3)- + B{x + l){x + 3f
+ C{x+lf + D{x + 3){x+lY. (1)

Muhiply through and collect coefficients with like

powers of x.

x'' + 5x-+^-5={B + D)x^+{A + 7B + C + 5D)x^

+ {6A + \5B + 2C + 7D)x + {9A+9B + C + SD) (2)

Let :r = — 1 in equation (1) from which we get A
= — 1. Then, in the same equation we let :«: = — 3

and find that C = 1.

On either side of equation (2) we equate coeffi-

cients of like powers of x to obtain

B + 0=1 and (3)

A + C+7B + 5D = 5 (4)

After substituting A=—\ and C=\ into equation

(4) we solve (3) and (4) simultaneously to obtain B
= 0and/)=l.

'] U+l)Mx + 3)- Ju + 1)= J(x + 3)= Jl,r + 3)

U+1)

i.x+\y'

-1

dx+ I {x + Z)--dx+\

U + 3)-
-+ln{x + 'i) + C

1

+ /n(x + 31 + C

U + 3)-(x + D

{x + \)(x + Z)

2

+ ln(x + 'i) + C

U + 5)U-2) x + S X-2 (x+l)U + 3)
+ ln{x + Z) + C
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{9x^ +\0x + 26)dx

+ 3) ix' + 4)J (2a-

This integrand contains a nonrepeated quadratic

factor in its denominator.

A _^Bx + C93:^+10.1 + 26

{2x + i) ix- + 4-) 2x + 3 ' x^ + 4.

Form a common denominator on the right hand side

and equate numerators.

9x' + 10;<: + 26 = A{x- + 4) +{Bx + C) {2x + 3)

Multiply through and collect coefficients of like

powers of x.

9x' + 10a: + 26 = (^ + 2B)x' + (W + 2C)x + {iA + 3C)

Equate coefficients of like powers of a: obtaining

A + 2B = 9

3B + 2C= 10

4^ + 3C = 26

The second term on the right of the equality is hke

formula (21) chapter 7:

", "
,
=^ln{au- + b)

J au- + Za

[ 2xdx f xdx ,ov 1
; , ? I A^

J;^=2j;^^
= (2)-/.(x^ + 4)

= //i(3a:2 + 4)

The third term on the right of the equality is like

formula (22) chapter 7:

( du ^ \ / ja\

J X-+4 Vam) \ '4/

'

{9x- + \0x + 26)dx ^5
{2x + 3)tx^ + 'i)

~2 ln{2x + 3) + tnix- + 4) + tan"' - + C

The simultaneous solution of these equations gives

us^ = 5,B = 2,andC = 2.

Substituting these values in the original

expression,

9x' + 10:t + 26 ^ 2;t + 2

(2x + 3){x'' + 4) 2x + 3 x' + i

- 2}dx

-i

n9x^ + \0x + 26)dx ^ f 5d.T f {2x + 2j

"J (2x + 3)U- + 4) ~J 2j + 3 J x' + '

= S [
'^ r 2xdx f 2dx

} 2x + 3 J x'' + 4 J x= + 4

The first term on the right of the equality is like

formula (20) chapter 7:

= - ln{au + b)
au + b

dx

2. + 3 •5)2/'«<2a: + 3)

= -/n(2A: + 3)

^/
((2 + 2)3

, The_ dfijiominator of the integrand contains a

repeated quadratic factor.

t'> + At^ _ At + B Ct + D Et + F
{t^ + 2f {t- + 2f {t-' + 2f {t^ + 2)

Equate numerators once the common denominator

is formed on the right.

,5 -I- 4^3 = ,^, + B) + (Ct + D) (/-' + 2) + (Et + F) {t~ + 2)2

Multiply out and collect coefficients of like powers

oft.

(5 + 4j3 = £^5 _|_ f(4 + (C + 4£),:i + {D+ 4F)«2

+ {A + 2C + 4.E)t + {B + 2D + 4F)

Equate coefficients of like powers of t.
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£•=1

f =

C + 4£' = 4

D + 4F =

// + 2C + 4£' =

Exercise 8-1

.

1. \ X cos xdx

2.

r (4<-2),

I

2)c(^

2<

4. I e*-^ sin nxdx

Thus,E=\,A=-4.andB = C = D = F = 0.

Substituting these values in the original expression, 5. I xvx — idx

t=+ 4«3 -4t + Ot + t +

-it

J (ir-

(f2 + 2)3
"^

f2 + 2

rui+4<^_ r tdt [
'}

{t^ + 2f j t' + 2 J (/2

tdt

+ 2f

{v'--9r

8-6 Improper Integrals

The integrals with which we have been concerned

have been proper integrals. We will now investi-

gate the properties of the IMPROPER INTEGRAL.

The first term on the right of the equality is
^he definite integral, jf{x)dx, may become im-

similar to formula (21) chapter 7:

/
Udu _ 1 , , 2 -1- ».\

au^ + b 2a

f tdt _ 1

J t^ + 2~2
'''

=^«U^ + 2)

proper m two ways;

(1) EITHER or BOTH of the hmits of integration

become infinite or

(2) the integrand, j{x), becomes infinite at point

a, or at point b, or any point in between these end

points of the interval from a to b.

The last term on the right is like formula (23)

chapter 7:

J la n+\

= -4 1 (t + 2)

2 -3+1

1

(/2 + 2)2

f^ + 4<3 1 ^ 1
;/"('' + 2) + 7TrT-^+ C

((2 + 2)3 2 (?2+ 2)2

= ln(t^ + 2) +
1

[i^ + 2f
+ C

Figure 8-5.-4= f" Kx)dx=. lim f f(x)dx

provided the limit exists.
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We will handle each of the above cases separately.

Case (1): The limits of integration become in-

finite.

A. The upper limit is infinite. We then use the

following definition.

rf{x)dx=lim l"f{x)dx

The definition is valid provided the limit exists. If

the limit on the right does not exist, the integral does

not exist. Figure 8-5 illustrates how this improper

integral may be interpreted as an area.

B. The lower limit is infinite. By definition

/:
f(x)dx= hm f(x)dx

provided the limit exists. Figure 8-6 provides an

area interpretation for this integral.

Figure 8-7.—>l=r" f(x)Jx= Mm P f(x)dx+ Mm f'fCxMx

provided both limits exist.

FIsure 8-6. ->\=:
j

'
f(x)dx= lim f f{,x)dx.

C. Both the upper and lower limits are infinite.

I

f(x)dx=\ f{x)dx+\ f(x)dx

Note here that we have split the original integral

into two integrals at the point c (fig. 8-7). Point c

may be any convenient finite point. Each of the

integrals may now be handled as in part A or part

B. That is,

I f{x)dx = hm I f(x)dx and

I f{x)dx = lim
I

f(x)dx

Both of these limits must exist in order for the

integral to exist. If either limit does not exist, the

integral does not exist.

Case (2); The integrand becomes infinite or dis-

continuous either at the limits of integration them-

selves, or some point in the interval between them.

Figure 8—8 shows fix) with a discontinuity at

point p. We wish to calculate the area indicated

on the figure, but we must learn how to deal with

function at point p.

The area WITHOIT the discontinuity would be

given by

/:
f{x)dx.

The area from a to p is by definition

yf{x)dx= Hm i f{x)dx.

We recall from section 5-4 that we called this the

left-hand limit of the function at point p. We take

the hmit of the function as t approaches p from the

left.
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Since the lim
•363

a P b

Figure 8-8.—Plot of f(x) with discontinuity at P.

Similarly, the area from p to i is given by

I
f{x)dx= lim I f{x)dx.

This notation indicates the right-hand limit of the

function as t approaches p from the right. Again,

these limits must exist in order for the integral to

exist.

The total area is then

A= I flx)dx= {"f{x)dx+ {"f{x)dx

= lim f{x)dx+ lim f{x)dx
i — p-Jn 1^1,+ J I

\^ hen working problems, care must be taken to

prevent integrating over an interval that contains

a section where the integrand is not continuous.

Example 8-5.

Evaluate the following integrals.

1
{'^dx_y ["dx ,. 1 1'^

1. — — lim —-= lim ——^

from formula (4| chapter 7.

81

2. f='4^=lim f''^=lim (i/„u^+l,)|'
Jo X~+l 1,^, Jo X^+\ t_. \2 / In

from formula (21) chapter 7.

= Hm i/n(6-+l)-^/n 1

i^» 2 2

But /«oc is unbounded so that the limit does not

exist. Therefore, the integral does not exist.

Jo ix- 3)2

When X = 3, the integrand.
1

:, has an infinite
U-3)-'"

discontinuity. We must spht the original integral

into two integrals at x='i.

dxr » dx ^ p dx C

'

Jo (x-3f Jo {x-3)- J.

_ lim r ' dx lim f
*

,^3- Jo (a:— 3)'' t-^3+ J I

.r-3)2

lim f * dx

lim

X —3)- t-^3+ J I (x — 3)-

J_Xr lim/ ^XM
V — 3/ lo 1-3+ \ .r — 3/ I,

(from formula (25) chapter 7.

hm
t-3 0-3J

\ t-3 3/ ,_,+\ t-

4-3 t-3

Both of these hmits fail to exist and, therefore,

the integral fails to exist.

Had we ignored the discontinuity and integrated

over the given limits we would have obtained the

incorrect result of — 1 -.

Example 8-5.

Set up the integration required to evaluate the

area beneath the step function shown shaded in

figure 8-9.

The discontinuity occurs at x=c, and in this

case it is a finite discontinuitv. Thus, the taking of
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a c b

Fisure 8-9.—Area under the step function y=f(x).

a limit is not required. We set up the integrals as

follows:

Area = f
"
f(x)dx = \ 'f{x)dx + I f(x)dx.

Example 8-6.

Set up the integrals necessary to evaluate the

shaded area indicated in figure 8-10. The function

plotted is — r-.
x{x—\)

First note that the limits of integration extend

from — oo to +00. Also, the integral has discon-

tinuities at ar = and x=\. We have four reasons

for caUing
r» dx

J-oe x(x-\
an improper integral. Any

one of these conditions is reason enough to call the

integral improper.

(1) The lower hmit is infinite.

(2) The upper limit is infinite.

(3) The integrand becomes unbounded (in-

finite) at jc = 0.

(4) The integrand becomes unbounded at

x=\.
It is necessary to break the original integral into

six separate integrals in order to calculate the re-

quired area.

x{x-\)

r» dx . f" dx f'
]-,x{x-\)^], x(x-l)l,^ J(x-l)

Where the points x = —\, -, and 2, are conven-

ient finite points falling in the intervals — <» < x

< 0, 0<;c<l, and 1 < a: < <». Each of the six

integrals contains only one quality of an improper

integral. The first integral is improper since its

lower limit is infinite, the second integral contains

an integrand that becomes unbounded at a: = 0, etc.,

for each integral that follows.

We employ the hmit techniques just developed

to each integral in turn.

/:
dx

lim I —

;

i-;+ lini ~: tt
a-'-:c]a x{x—\) ,-.0~ J - t x(x — 1)

,. f"' dx
,

,. [• dx

,-.o + Ji x(x-l) i^^-}^i^x(x—l)

+ lim — 5-+ hm I

,-,1+J, X{X-1) t,^ + ^J2 i(x-l)

Figure 8-10.—Area under the function y—
x(x-1)

If ANY of the six limits so calculated does not

exist, the original integral does not exist.

8-7. Determining Areas in Rectangular Coordinates

We have described the integral in previous ap-

plications as representing an area under a curve.

We will develop this idea further in this section and

learn how to perform actual area evaluations. The

methods we intend to use are less theoretical than

may be found in a more advanced calculus course.

Nevertheless, they will prove adequate for our

purposes.

Figure 8-11 is the plot of y=J\x) whicli is at all

points positive throughout the interval a ^ x ^ b.
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X'^^x

A) --(7 X^-Oi- X X^-b

Fisure 8-11.—Area under y= ^x) between limits o and b.

The area which we wish to determine is bounded by

y=f{x),y=Q,X\ = a, and j:3 = 6. We have indicated

on the figure a narrow rectangle of width Aj:. In

order to calculate the area of this small rectangle,

we need its length. We choose the average length

of the rectangle determined from
yi + y2 _-

Therefore, the area itiA) of this small rectangle is

A^ = yAjt.

Then,

bA -
Ax

The change of area over an interval Aa;, is equal to

the average ordinate (y) in that interval. More-

over, in the limit as Ax^ 0, we see from the figure

that y-> yi =j{xx) =fia).

dA

dx

lim A^ , , . J
'^^ A^"^

and£W=yJx.

If we sum these small areas over the entire in-

terval from a to b, we obtain

rb rb rb

A=\ dA=\ ydx= j{x)dx

You may choose to view this last integral as caus-

ing the rectangle of constant width dx. to shde along

the X axis between the points a and b. As it slides,

the top either stretches or contracts to fit the con-

tour of y=f(x). The area thus traced out is the

area required.

x^f(y)

Figure 8-1 2.—Area bounded by x=f(y) between limits o and b.

Figure 8-12 is a plot oi x—fiy). In this case our

rectangle is of average length, x, in the interval

Ay. The student should verify that the area in this

case is

A=\f{y)dy
J a

by following the steps covered for the first case.

Example 8-7.

Calculate the area indicated in figure 8-13.

The function plotted is y= 7 and since our area

element (A/i) is vertical, we use

Y

Figure 8-1 3.— Area under y^ . between limits o = 2 and b=5.
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-fydx=r
•J a -^ a

f{x)dx.

Note, on the figure that yAx is the area (A^) of

the small rectangle shown. In this problem fix)

x'^=—
, a = 2, and 6 = 5.

4

rV 1 r^ 1

4 3

^ = ^\dy^^\f(y)dy.

The function is f{y) = 2y"'^ and the Umits are a = 3,

id 6 = 7.

.A={ 2y'"'dy=2 ( fl^dy=2^"' 3-^

from formula 4 chapter 7 where n = 2, u= a , and

du = dx.

53 23 125-8 117 39

12 12 12 12
= 9.75 square units.

Example 8-8.

Solve for the inverse function of the previous

problem and determine the area shaded in figure

8-14.

The direct function in the previous problem is y
x^=— • The inverse function (see example 5—19,

section 5-11, chapter 5) is j: = ±2y"^.

We have shown only the plot of the positive root,

_)_2yi/2. Xhe area element is horizontal and of

width Ay and length x. The area is given by

Figure 8-14. Area bounded by inverse function of y = -

between limits a=3 and b=7.

from formula (4) chapter 7 when n=-, u = y and du

dy.

^=^.73/2 33/2

(73/2 -33'2)= 1.33(18.5 -5. 19) = (1.33) (13. 3)

= 17.8 square units (approx)

Figure 8-1 5.—A=£ >'<'«=[ fMdx

We now look at the function plotted in figure 8-15.

We use vertical area elements to evaluate the

shaded area. Thus.

-I ydx=L
Jo Jo

= f{x)dx.

But this single integral will give us the algebraic

sum of the two portions shown which comprise the

total area. Note in the first portion that y is above

the X axis and positive while in the second portion, y
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is below the x axis and negative. Looking at the

integral, we see that this wiO make the first portion of

the area a positive quantity and the second portion a

negative quantity. Thus, integrating across the

interval from to 6 with one integral will yield the

algebraic sum of these two portions.

Normally we are concerned with the total AMOUNT
of area, and not the algebraic sum. We therefore

use the absolute quantity notation and split the

original integral into two integrals. The absolute

signs merely indicate that we are interested only in

the MAGNITUDE of the enclosed expression and

NOT THE SIGN. Thus,

B. The total area is obtained by adding the ah

solute values of the two shaded portions.

f f{x)dx +
[

-'o J a

f{x)dx

The result will now be the sum of the two shaded

portions rather than the difference which we would

have obtained from the original single integral.

Example 8-9.

Calculate (A) the net (algebraic sum) area, and

[B) the total area indicated in figure 8-16.

A. The algebraic area is given by integrating

directly over the interval from x = 0\ox = S with one

integral.

A=\ ydx=\ (2-x)dx = 2x-^\
Jo Jo ^10

/J = — - square units.
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Therefore, the area in which we are interested is

'=f
(y.- y2)dx.

Note that the area element used is of height

(yi — y2) and width Ax.

In this particular case we could have used a hori-

zontal area element of length Ui—:>f2) and width

Ay (fig. 8-18). We could accomplish this simply

by solving for the inverse functions associated with

yi and y2 so that

ry=b

A= I (xx—X2)dy.

ry=b

Jy=a

In the previous problem it did not matter whether

we mtegrated with respect to y or x. That is, it did

not matter whether we chose horizontal or vertical

area elements. Such is not always the case.

Figure 8-18.—Area bounded by xi=fi(y) and Xi^f-M-

The area shown in figure 8—19 requires only one

integral if we choose vertical area elements (in-

tegrate with respect to x). If we choose horizontal

area elements however, note that it would require

two integrals. This is true, for the length of the

vertical element would be expressed differently

depending upon whether the element was below or

above the dashed line. The length of the vertical

element can be expressed as (yi— y2) over the en-

tire area and thus requires only one integral.

AU area calculation problems should first be

sketched so as to determine two things;

(1) Is some of the area + and some — ? If so,

do we wish to use absolute values?

(2) Which is the best choice of area elements?

Figure 8-19.—Area bounded by yi=fi(x) and y: = f;(x).

Example 8-10.

Calculate the area bounded by the straight line

x = y and the parabola 6x = y^ (fig. 8-20).

An examination of the figure reveals that one

integral results whether we use either vertical or

horizontal area elements. We choose to use hori-

zontal elements.

We must solve for the points of intersection in

order to determine the limits of integration. Si-

multaneous solution of the two equations yields

(0, 0) and (6, 6) as the points of intersection. The

limits of y are to 6.

•=( xdy=C
Jo Jo

r dy

A = 36 216
"

18
''

^/f_y^\
I

6/"-' \2 18/ lo

6 square units.

Figure 8-20.—Area bounded by x= y and 6x=y-.
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The student should verify this resuh by perform-

ing the integration with respect to x.

8-8. Determining Areas in Polar Coordinates

We now have a better understanding of the "area

under a curve" concept. There is practically

nothing new to grasp in dealing with area calcula-

tion in polar coordinates. We do need to see what

the basic area element is in polar coordinates.

In rectangular coordinates we saw that the basic

area element {Aj4) was either v'Ax or xAy depending

upon whether we intended to integrate with respect

to a: or y. A simple ratio relationship will provide us

with the basic area element in polar coordinates.

Figure 8-21 is a circle with radius p and containing

the radian equivalent of 360° or Itt. Sketched

within the circle is a sector of the circle with radius

p and an angle of A0, measured in radians. We
wish to calculate the area of this sector of the circle.

Let A be tiie area of the circle iTrp'^) and let AA be

the area of the sector. Then,

A 2n TTo^ A.4 ,

TT^ T7 or —— = -—
- so that

AA A9 2tt Ad

dA _ lim AA _ trp- _ p~

.'. the formula for the area element

coordinates is

dA=^p^de.

polar

Hence.A=\ dA=\\^ de.

Example 8-1 1.

Find the area contained within p = 2a cos d (fig.

8-22).

The equation when plotted is a circle with its

center on the x axis. It has a radius of a so that its

area is immediately tto^. Let us check this result

by integration using polar coordinates.

Figure 8-22.—p=2a cos d.

The area element is indicated in the figure. If we
measure the angle 6 from the x axis, we obtain the

limits of integration by setting p = 0. We obtain 6

and -^, but — is equivalent to
2 2

limits are -

so that the

Note that these limits would

permit the area element to sweep out the entire area

of the circle. The same result could be achieved if

we permitted the area element to sweep over the

upper semicircle twice; that is, if we restrict 6 to

77
limits from to ^- This is true because of the

symmetry involved with respect to the x axis. In

equation form, then,

1 1 p'de=(2)l\ p^de

Now, p = 2a cos 6 so that A=\ 40^ cos^ 6 dS.

Figure 8-21.—Basic area element used with polar coordinates.
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But by an identity,

cos^ e-
1+cos 2 e

A =
^^.ji^cosm^^

4a^

2
d6 +^ \ cos 26 d0

= {2a^0 + 2d^'-^

from formulas (3) and (26) chapter 7.

nl2

A = 2(r {e +
sin 26

2

sin 12)

= 2a'
I)

E + «
2 2

2,. [„.-!-]

.,. (o+l

Thus, we verified our earlier resuh.

element in polar coordinates is dA= — p^d6. The

area. A, of the leaf in quadrant I is /4 =
2J0

p^d6

and the total area. At, for the leaves in all four

quadrants is

1 rnl2 Cnl2

^r= (4)- p~d6 = 2\ a-sin'ie
2 Jo Jo

i\T • •> o^ 1 cos 40 ,

INow, sin-^ ^"~9 9— ^o ^"^^

--"r(i-^)-
9/72 f-^l'^ 2a^ f'^'^

2 Jo 2. Jo

\nl2

= {a-0 - a^ sinm
\

\o

from formulas (3) and (9) chapter 7.

|7r/2

^r=a2(0-sin4e)
u

= fl2 ('|-sin Y)-a'[0-sin4(0)]

-o)-a-(O-O)

(fe

" 2

2"

Example 8-12.

Determine the area enclosed within p = a sin 26

(fig. 8-23).

This figure is called a four-leaf rose. The student

should take time to plot values of p for various values

of B.

The quadrants are labeled in the figure. From

symmetry with both coordinate axes, we see that if

we calculate the area of one leaf of the rose and

multiply it by four, we will obtain the total area.

The limits on 6 for the leaf in quadrant 1 are ob-

tained by setting p = 0. When p = 0, = or -

As mentioned previously the formula for the area

Exercise 8-2.

Find the areas bounded within the following

functions. Sketch each problem before attempting

a solution.

1. The hnes .v + y=4. x=v. and y=0 (the x

axis).

2. The parabola v'=3.v- and the line y= 4.

3. The circles p = 3 sin 6 and p = 3 cos 6.

8-9. Calculation of Work by Integration

Let us assume a situation in which a force is

acting on some particle. The work that the force

does on the particle is the product of the force and

the distance the particle moves.

Work = force X distance
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90°

Figure 8-23. —p = a sin 29.

If the force and tlie motion are in the same direc-

tion, the work is positive. If the force and resulting

motion are in opposite directions, the work is

negative.

figure 8-24 shows two positive charges, qn and qi.

Charge qo is fixed in position, but qi is free to move.

The charges are alike so that qo will tend to push qi

away along line AB. The work done by qo on qi

will be positive for both the force and motion are in

the same direction. Now let us push against q, so

as to oppose, but not stop the motion of qi away

fiom qo. The work we do on qi under this situation

is negative as the force and motion are oppositely

directed. If we push harder and stop the motion of
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Figure 8-24.—Example 8-13.

^1, we are doing no work as we have defined work

here. There is a force exerted, but no motion

results and hence, no distance over which the force

acts.

If we exert still greater effort and begin to move

qi towards ^o, we are doing positive work since both

the force and motion are in the same direction.

However, the work done by charge 90 is now nega-

tive as the force it exerts is directed oppositely to

the motion.

The force one charge exerts on another, separated

by a distance r, is given by

The force is in dynes when q\ and qo are in cgs

electrostatic units of charge and r is in centimeters.

The constant K. is the permittivity (dielectric) con-

stant. The value of this constant varies with the

material, but for air and free space, we may assume

it to be unity. For problems in these surround-

ings, therefore, the force equation reduces to

F =^ dynes

We now wish to calculate the work we must do

to move a charge in the presence of a second charge.

Figure 8-24 illustrates the problem. Both charges

are positive and originally separated by a distance n.

Example 8-13.

Calculate the expression for the work necessary to

move qi to a new position r2, nearer to qo-

The differential work element is dw = Fdr. The

force F, is variable so that we must integrate, dr'xs,

the differential path element through which the

force acts. We form the following integral

W '/•*«=-/; Fdr.

The negative sign is introduced because the force is

directed in the direction of decreasing r. (Recall as

we travel along the x axis towards decreasing values

of X that we are traveling in a negative direction.)

W=-r-^dr=+^"
J., ^ r \r,

r=(^-2l2o^ergs

The work wiD be a positive quantity for we have

specified r2< r\.

Example 8-14.

It can be shown that the work, dW, required to

move a differential of charge, dq, from one point to

another, across which there exists a potential dif-

ference (vohage), F, is dW= Vdq. What work must

be done to charge a capacitor to a voltage Ki?

The charge on a capacitor is given by

and
q = CV

dq = CdV

since the capacitance of a given capacitor is con-

stant. From the work relationship provided above

we obtain.

dW=Vdq = CVdV

w- \-'<' 1cvdv=^a^

B^ =
I
CFi^ joules

The units of work in this case will be joules if C is in

farads and V in volts.
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8-10. Integration Applied to L-R and R-C Series

Circuits.

Whenever stored energy within a circuit element

is suddenly released by a switching action (with no

external source), the response of the circuit can be

predicted by the circuit elements. Because of the

fact that the response of the circuit to an internal

energy (stored) is dependent on the circuit param-

eters themselves, it is called the "natural response"

or the "source free response." A natural response

(change of current or voltage) of any R-L or R-C
circuit always approaches zero as time tends to

infinity for this is due to the energy loss due to the

resistor.

We will now derive the natural responses of some
very simple circuits such as the R-L and R-C series

circuits.

Referring to figure 8-25A, let us suppose that at

time t = the inductor (L) carried an initial current

i = io. We know that:

and
V=VL+Vr

V=L^+ iit)R.
dt

2. GRAPH OF iff) \/S t

t=o

ir=o^

Vc4
-H(—

I. R-C CIRCUIT

2. GRAPH OF ///; VS t

Figure 8-25.—Decay of current in LR and RC circuits.
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(Note that i{t) is stating the current, i, is a function of We know that:

time, t.) Now at time t = 0+ we know V=0 and,

diit)

l=V,.+ Vr

= L^^+i{t)R horn which
dt

di{t)_ R .— j-dt
lit)

Integrating this expression we have

lni(t) + K = -j-t

Now solving for the constant {K) of integration

knowing that al t = 0, i = io, therefore Inio + K = Q

and K = —lnio{t).

Substituting this value for K in the original expres-

sion we have

p
lni{t) — lnio{t) = -jt

In
at) .

io(t)
-1-

Equate both sides of the expression as powers

of the base e:

and

V=qlc + i{t)R.

Taking the derivative of both sides of the equation

we have:

dV_ 1 dq diit)

dt Cdt dt
R

at time
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functions. But in many cases only the approximate

value of the definite integral I f{x)dx is needed.

These cases arise frequently in engineering prob-

lems where values are obtained from experimental

data.

r"
Suppose this definite integral. I f{x)dx, is con-

sidered to be the area under the curve of f(x) from

X = a to X = b (fig. 8—26). Also, consider the interval

6 — fl is divided into n equal parts each of width

b-a

J
/U)afA: =y [yo + 4(y, + y, + y5 + . • •)

+ 2(y2 + y4 + y6 + . . .) + y„],

giving the symbol Vo the value of the first ordinate,

Yn the last ordinate, and n being an even number.

This rule is based upon the use of parabolic arcs to

approximate the curve between two ordinates.

The trapezoidal rule was based upon straight lines.

Thus, Simpson's Rule gives a belter approximation

of the area under the curve than the Trapezoidal

Rule, where the number of intervals n is about the

same.

Figu 8-26. -Approximate integration by the trapezoidal

rule.

Then the sum of the trapezoidal areas formed
under the curve wiU be an approximation of the area

under the curve from Xo = ato x„ =b. Saying that

Ax = , then the sum of the areas is equal to

1,

2
(yo +yi)A;c '^2^-^' '^.V'^''^ +

+ -(y„ — l-|-y„)Aj«:.

Therefore, the trapezoidal rule is:

f
"f{x}dx = ^(y„ + 2y,+2yi + . . .

J xn ^

+ 2y„-,+y„)

8-12. Approximate Integration by Simpson's Rule

An approximate solution to a definite integral may
also be found using Simpson's Rule. Using the

same notation as in figure 8-26 and Ax equahng
b-a c- - Tj 1 •

. bimpson s Rule is:

8-13. Mechanical Integration

Another method of approximating an integral is by

mechanical means. Once the curve of the function

to be integrated is plotted, the area under the curve

may be obtained by use of the planimeter. This

is a mechanical device by means of which you can

compute the area of an irregular figure after tracing

the outline of the figure with a tracing point attached

to the mechanism. Figure 8-27 shows the opera-

tional principle of the so-called polar planimeter,

the type most commonly used.

The principal parts of the instrument are two bars,

PA and AB. Bar PA swings around a fixed point

called the pole of the instrument. The two bars are

freely joined to each other at point A. Bar AB
travels over the paper on a wheel R, which revolves

Figure 8-27. The polar planimeter.
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as the tracing point at B moves along the outline oi from about 1" = 20' to about 1" = 200'. In using the

the figure. As the wheel revolves, the revolutions it instrument, you first determine the planimeter con-

makes are recorded by a dial on the instrument. slant, meaning the area represented by a single

The dial is graduated for direct reading to the revolution of the wheel. The area of the figure is

nearest 0.01 revolution, and is equipped with a equal to the product of the planimeter constant

vernier for reading to the nearest 0.001 revolution. multiplied by the number of revolutions the wheel

The instrument can be set for any desired scale makes as you trace the entire outline of the figure.

140



CHAPTER 9

SERIES

9-1. Definitions

Before discussing series we first must define

certain terms used to describe series.

A succession of numbers which follow each other

in a definite order is called a SEQUENCE. The suc-

cessive numbers are called TERMS of the sequence.

Each of the following are sequences.

(a) 2, 4, 6. 8, 10, 12,

lb) lO, 7, 4, 1,-2, -5,
(c) 2, 4, 8, 16, 32, 64, 128

11 11
(d) 9,-3, 1.

3 9 27 81

In the preceding example la), each term except

the first is formed by adding 2 to the preceding term.

In example (d), each term except the first is formed

by multiplying the preceding term by — -

A sequence of numbers in which any term after

the first may be obtained from the preceding term

by adding to it a fixed number, called the COMMON
DIFFERENCE, is called an ARITHMETIC PROGRES-

SION. Example (a) in the preceding paragraph is

an arithmetic progression.

A sequence of numbers in which any term after

the first may be obtained from the preceding term

by multiplying it by a fixed number, called the COM-

MON RATIO, is called a GEOMETRIC PROGRESSION.

Example (c) from above is a geometric progression.

Let Ui, U2, U3, . . . . , Un be any unending

sequence of reed numbers positive or negative. The

expression Ui + uo + . + u„+ . . . , is called an

INFINITE SERIES when the terms are formed accord-

ing to some law of succession.

9-2. Properties of Series

In the series U| + U2 + Us • • . + Un + - . . let S„

represent the sum of the first n terms: that is, let

S-2 = Ul + U2

83 = Ui + U2 + U3

84 = Ui + U> + U3+ U4

8n = Ui + U-> + U3+ . . . .+U„.

Example 9-1

.

In the geometric series 1 +'5^+ +^+ • •

findSi. S.-i and S„ =— where Ui is the first
1 — r

Un+l 1 I 1

term, r is a common ration . and n is the number
u„

of terms. (Proof of S„ = —h : A geometric
1 — r

series has the general form of V (/ir*"' = Uj + U\r

-|-u,r2+. . . .+u,r"-' + . . . .

From the identity

l-r" = (l-r)(l + r+r2 + . . . . + r""') the sum,

S„, of a geometric series is

S, = l

c -1+1. i-M

ij
S =1+-+ -!^+ H

—

— =
^" ^^3 9- 3"-' . 1

Example 9-2.

In the arithmetic series 1 + 3 + 5 + 7+. . . .,

find Si. 83 and S„ = - lui + u„) where n is the number

of terms, u\ is the first term, and u„ the nXh term.

141

698-990 0-64— 10



MATHEMATICS, VOLUME 3

(Proof of Sn = ^ (ui + u„): The sum of the first n

terms of an arithmetic series may be written in two

forms of

S„ = ui + (ui + d) + {u, + 2d)+. . . . + [ui + (n-l)d]

S„ = u„ + {Un-d) + {u„~2d)+ . . . . + [u„-{n-l)d\

where d is the common difference.

By addition of the two forms we have

2S„ = {Ui + U„) + (Ui+ Un) + {U,+ Un)+ . . + iUi + U,,)

or

2Sn = n(ui + u„)

Thus,

S„ = -{ui + u„).)

Si = l

53=1 + 3 + 5 = 9

S„=l + 3 + 5 + 7+. . . .+{2n-l) = n^

Example 9-3.

In the alternating series,

1 - 1 + 1 - 1 + 1 - . . . . , find S,, S3, S4, and S„

S, = l

S3=l

S„ = 1 or respectively as n is odd or even.

The above examples illustrate the three cases

which may occur in an infinite series. They are

as follows:

Case 1: S„ approaches a limit, S, as n increases

without limit (Example 9-1).

Case 2: Sn attains a larger value than any as-

signed value of n greater than 1 (Example 9-2).

Case 3: S„ remains finite and does not approach

a limit as n increases without limit (Example 9-3).

Zero is a finite number.

The series that fall into Case 1, are called CON-

VERGENT series. Those which fall into Cases 2 and
3 are called divergent series.

A preliminary test for divergence which may save

considerable time is to examine the nth term, u„,

as n approaches infinity. If u„ is not zero the series

is divergent. If u„ is zero the series may be either

divergent or convergent so that further tests are

required.

If the sum, S„, of the series approaches a limit as

n approaches infinity the series is convergent. If

it does not approach a limit the series is divergent.

The preliminary test for divergence may be
written as

lim u„ 7^

Thus it may be repeated: If the limit (as n ap-

proaches infinity) of u„ is not zero the series is

divergent.

Example 9-4.

Is the infinite series 1+2 + 3 + 4+. . . . con-

vergent or divergent?

n(l + n)
u„ = -

il"l„„ = „'l'".|<l + ") = <x^O

thus the series is divergent.

Example 9-5.

Is the series I+0+5-+. . .H 1- . . . . con-
2 '3

vergent or divergent?

1

Hm hm 1 „
„-..Un= „^» -=0

thus the series may or may not be convergent. At

this time the answer can not be obtained.

The convergence of a series does not change

when a finite number of terms is omitted because

the sum of the finite terms omitted and the sum of

the depleted series is equal to the sum of the

original series.

For example in the geometric series 27 + 9 + 3

+ 1 +- + - the sum Sn of the series is

27 1—--
lim „ _Iim Uijl — r")_hm \ 3"

hm^^V^ 3-j 27(1-

-I

-^= 40 i
2 2

9 1
inhere «i = 27 and r= —r= -
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Thus the given series converges on 40 -

If the first three terms of the series are removed,

the depleted series 1+- + Q .... will converge on

S'„
lim Mi(l — r") _ Ur

4
11

-I

and r =

—-— = 1 - where ui — l

Thus the depleted series converges on 1 -

The sum of the terms omitted (27 + 9 + 3 = 39) is

a finite number which added to the sum (S'n=l-5)

of the depleted series is equal to 39+1 - or 40 -

which is the sum, Sn, on which the original series

converged.

We may assume that if Sn of an infinite series of

positive terms is always less than some definite

number, the series is convergent. With this as-

sumption we can discuss comparison tests for con-

vergence and divergence.

Given a series of positive terms U\ + Uo + . . . .

+ u„+ . . . . , to be tested for convergence. Sup-

pose we find a series of positive terms ti + to

+ tn+ . which is known to be convergent.

If u„ ^ tn for aU corresponding terms, then the

sum of the u series is equal to or less than the sum
of the convergent t series, and the u series is

convergent.

Given a series of positive terms ui + U2+. . . .

+ u„ + . . . . , to be tested for divergence. Sup-

pose we find a series of positive terms ti + t-2 .

+ t,i + . . . . which is known to be divergent. If

u„ = t„ for aU corresponding terms, then the

u-series is divergent.

Convergent Series for Comp.arison

The following series are convergent:

'• ^-h-h

2- i+5;+5i+- . +— +•

3. a + ar+ar^ + . . . + ar«-' + . . . (r < 1)

4.-^+-L+-L+ _J_
1(2) 2(3) 3(4) n(n + l)

Divergent Series for Comparison

The following series are divergent:

2 3 4 n

2. a + ar+ar^ + . . . . ar"'^ + . . . .(rgl)
Another test which can readily be used on series

whose terms are not all of the same size is the ratio

test.

Consider the ratio, —^
, of the (n + l)"' to the

Un

nth term. Suppose that this ratio approaches a

limit as n approaches oo. We may now state the

ratio test as follows:

(The parallel enclosure lines indicate absolute

(numerical) value without regard to sign.)

, -^ Hm
I

u„ + 1 I . ,

1. If n — » "^ 1' th^ series converges

._, ... Um
I

u„+i L 1 ., • ,.

2. If „-.« > 1, the series diverges
I

u„
I

„ ,^ lim
I

«„+ 1
I , , c .-,

3. If „^, =1, the test fails.

\
u„

\

Example 9-6.

A. Test for convergence and divergence of the

series:

-H
"" 3"~> "

Un + 1

Un

3'"

Hm3
-n-(l-n) 1

< 1 and the ratio test (condition (1) above) indicates

.+— +. (a>l)
the series to be convergent.
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It has been shown previously this series is

convergent on the finite number 1 ;; by the method

Um S„
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Exercise 9-1.

Find the interval ot convergence for the following

series.

1. 1 +
i)+(i)'-(i)'

The function exists for all values of a; except when
x=l.

Let us now find the infinite series that represents
the sin x, and assume that it will be in the form of

the power series.

2. .+
2 + 3+-

(Note:

= li

lim \ n

1

1 +

hm

1

1 +

n+1

1 1+0
= 1)

^333
9-4. MacLaurin's Series

Given a function /(a:) which is written in the form

of an infinite series, the function is said to be ex-

panded in an infinite series and the infinite series

is said to represent the function in the interval of

convergence. One such expansion is called a

MacLaurin's Series and wiO be described later in

this section.

Example 9-8.

The geometric series,

l+x + x^ + ....+x'' + .... converges to

1

1- for U < L

(Note that S„ = "''/ """' from example 9-L

S„-

1

1-r \-r 1-r

Now then the liniS„ =-^ and the preceding

geometric series converges to T^.) Therefore

1

1+.
\ + x + x- + + .r" + .

1

1 ^ X < 1 and

the function r is expanded in an infinite series.
1 —X

The series represents the function only when
~ 1 ^ :« < 1 for the series converges with these

limits on x, and diverges for all other values.

f{x) = A + Bx + Cx' + Dx^+. . . .

In this case y(j:) = sin x. Our problem now is to

determine the value of each coefficient, A, B, C,
and so forth.

First, let the power series exist for the sine func-
tion. Then differentiate with respect to x several
times:

1. Ax) = s[nx =A+Bx + Cx- + Dx-' + Ex''

+ Fx''+

2. f'(x) = cosx = B + 2Cx + 3Dx^ + ^Ex^

+ SFx* + . . .

3. f(x) = -smx = 2C + 6Dx + UEx^
+ 20Fx-> + . . . .

4. f"{x} = -cosx = 6D + 24Ex + 6QFx''+. . .

5. f"'(x) = sin x = 2'iE+ l20Fx + . . . .

6. f""(x) = cos a; = 120F -I- . . . .

Assuming that the above equations are true when
x = 0, we find the coefficients .4, B. C. and so forth

as follows:

L f{0) = sinO = AoTA =
2. /'(O) = cos = B or fi = 1

3. f'iO) = - sin = 2C or C =

4. /"(O) = - cos = 60 or D = - 7
6

5. f"'{0) = sin = 24iE: or E =
1

6. f""{0) = cos = 120F or F =
120

Now we have evaluated the needed coefficients.

Substituting these results into (1),

sin.v = .:--+— -.
(-l)'"+"x«"-"

(2n-l)!

This series enables us to calculate the sine of an

angle by substituting the value of the angle, in ra-

dians, into the series.

The procedures which are followed to arrive at

the required series are the same procedures that

the MacLaurin's Series represents in its general

form to expand a function.

The general form of the MacLaurin's Series is as

follows:
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/u)=/,o)+/'(0).+oo)^+^::f^

4!
-^- • • •

This expansion theorem may be used when we
know the value of the function when x = and when
we can calculate all the successive derivatives at

the point where :«: = 0. If /(O) or any of its deriva-

tives, f{0), are undefined, the MacLaurin Series

can not exist.

Example 9-8.

Find the expansion of

f sinxdx

We have already found that sin x = x—^+ r,
—

6 120

. . . . + and we note 6 = 3!, 120 = 5! and so

forth. Thus the exponent of x is equal to factorial r

where r= 1-2-3 . . . . r and the expression becomes,

Sinx =x-| + |y-|y+....

Dividing both sides of the equation by x,

sin X
I — — + —

3! 5! 7!

and, from chapter 7,

f -^sinxdx r -^
, r -^ x^dx

, f
-^ x*dx f -^ x«<:

Jo ^r-=
J„ ^^-J„ TT+

Jo ^-Jo ^
dx

+ .

3-3! 5-5! 7-7!

Exercise 9-2.

Using MacLaurin's Series, find the expansion of

the following functions:

l.f(x) = e^

2. fix)= tan X

9-5. Taylor's Series

The Taylor Series is very similar to MacLaurin's
Series for both are power series. A function

fix) may be expanded about a point "a" instead of

about the origin. That is, fix) can be represented

by the series:

f{x) = ao+aiix — a) + a>(x — a)- +
+ a„ ix — a)"+

The coefficients Oi are computed by repeated differ-

entiations of the above relation and evaluations at

the point x = a.

The general form of Taylor's Series is as follows:

/U) =/(a)+-^U - a)+-^ U - a)2

f"\a)
ix - a)" + .

When a = 0, we have the MacLaurin's Series.

Taylor's Series may be used to expand functions

when we have the value /(a) of the function for some
nearby value a of the independent variable and

the values f'ia), f"(a), etc.

Example 9-9.

Find the expansion by Taylor's Series of sin x

about the point a.

/(j;) = sin X

f'ix) = cos X

f"ix) = — smx
f"'ix) —— cos x etc.

Substitute these values into the general form of

Taylor's Series to obtain:

sin j: = sin a + cos a ix— a)

smaix — a]'^ cosa{x — a)^

2! 3!
+ .

The Taylor Series, may possess certain advan-

tages over the MacLaurin Series.

1. It may exist for functions having no Mac-

Laurin's Series.

2. The Taylor Series may converge more rapidly

for certain values of "a" in the general expression

than does the MacLaurin's Series for the same

function.

Exercise 9-3.

Find the Taylor's Series of the following functions:

1. fix) = I nx, in powers of ;e — a.

2. /(;«:) = cos a:, in terms of x — a.

Notice that one may easily compute the values

needed to make tables of the trigonometric, loga-

rithmic, and exponential functions by the use of

series.
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CHAPTER 10

INTRODUCTION TO DIFFERENTIAL EQUATIONS

10-1. Definitions

Before one can study differential equations, one

must be able to recognize them and know their

properties. Therefore, we ask, what are differen-

tial equations?

A differential equation is an equation containing

at least one derivative of a function. Some ex-

amples are:

dy
-j-=\.an X
dx
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y=Cie-^ + de

Since two constants are to be eliminated, we differ-

entiate the general solution, equation (6), twice with

respect to x to obtain

'6) Transpose and divide by x{y+3) to separate the

variables. This gives:

2dx ydy _ „

(^3.=_andy -^j

(7)

(8)

The elimination of Ci from equations (7) and (8)

yields

y'
'
— y' = SOC-ie"^-^;

the ehmination of Ci from equations (6) and (7) yields

y' —y= — bCiC'^^

Therefore,

and

y"— y'= — 5(y'— y)

y" + 4y' — 5y=0 (9)

Notice that the above differential equation (9)

is of the second order and that the general solution

contains two arbitrary constants C\ and C-i.

10-3. Differential Equations of the First Order

and Degree

We now will take up the solving of differential

equations. Our work will be limited to a lew im-

portant kinds of equations.

The general equation for differential equations

of the first order and degree is

Mdx + Ndy=0 (10)

where M and A' may be functions of both x and y.

A more hmited form of (10) above is when M is a

function of x alone or a constant and A' is a function

of y alone or a constant. In this form the VARIABLES

CAN BE SEPARATED and integration performed on

them to produce the solution. The following ex-

ample will illustrate the separation of variables.

Example 10-2.

Solve the equation

2(y + Z)dx -xydy = 0.

2dx

y+3

3

y+3>^=«

Now, by direct integration we obtain the solution.

(Using rules (5) and (1) section 7-8).

llnx-y+J, ln{y+Z) = C (11)

The above solution is correct, but the presence of

two logarithmic terms suggests that we put the

arbitrary constant in logarithmic form and simphfy.

Thus directly from (11) we may write the solution as

2ln x-y+ e ln{y +3) + In C,=0

where Ci is a different arbitrary constant from C.

Further simplification yields

y=2 lnx + 3 ln(y + 3) + /« d,

and tlius the final solution is

e« = Cix2(y+3)-\

Exercise 10-1.

Obtain a general solution of:

1

.

my dx = nx dy

2. sin X sin ydx + cos x cos y dy=
3. a-x)y=y^

If in a differential equation, the dependent vari-

able and its derivatives appear in no powers other

than the first, the equation is said to be LINEAR. A
linear equation of the first order has the standard

form of

dy+Pix]Ydx = Q{x)dx.

iPix) and Q{x) are functions ()f the variable x.)

One can solve this type of equation by finding an

INTEGRATING FACTOR S, must be found so that when
dS = PS dx and the factor is applied to the general
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form above, we obtain S <fy+y/'S(fx = S^(/x, from The integrating factor may be found from (15)

which the general form will reduce to

Sdy + y dS = SQ dx (12)

We recall from our work in differentiation that the

differential of a product is d{uv) =vdu+udv. thus

(12) reduces to

diSy} = SQdx. (13)

Integrating both sides of the equation yields the

general solution of (13) as

=/Sy=\ SQdx + C (14)

which is also the general solution of ( 12). Therefore

the integrating factor S must be found from the con-

dition imposed that

dS = PS dx.

By separating the variables, the equation becomes

with a general solution of

lnS= I P dx or

S = e \ Pdxi = e j J

(15)

Example 10-3.

Solve the equation

2{y-ix'^)dx + xdy=0

The equation is linear in y. Dividing by x and

putting into general form it becomes

2^dx-8xdx + dy=0
x

2
dy+ - ydx = 8x dx

Note similarity to the standard form:

dy+P{x)ydx=Q{x)dx

where P{x) = - and Qix) = 8x

(16)

JPdx

i!
dx

= (e"' •'•)- =

Multiplying equation (16) through by the integrating

factor x^ we obtain the equation

x'^dy+ 2xy dx = 8x^dx

Note similarity of (17) to (12):

x-dy+ 2 xy dx = 8x^dx

Sdy+yds = S-Qdx

where S = x-, ds = 2x dx and Q = 8x

(17)

(17)

(12)

The solution of (17) by (14) is then found by sub-

stituting X- for S and 8a: for Q in (14):

Sy = i SQdx + C

x'-y= j
x--8x dx+ C

'I
8 x^dx + C

8x^

.r-y=2.v-' + C

Exercise 10-2.

Find the general solution.

1. {x* + 2y)dx-xdy=0
2. y' = csc.t — ycot X

3. dy=(x — 3y)d\

10-4. Homogeneous Linear Differential Equations

With Constant Coefficients

The most important type of second-order differen-

tial equation is LINEAR, that is, it has the form

dh- <Iy „ ,^+^^ + By=/(.) (18)
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We will now discuss the special case of the above

equation when A and B are constants and/(x) = 0.

With these conditions, equation (18) is said to be a

second-order, homogeneous, linear differential equa-

tion with constant coefficients.

Since -^— =me"'-^, it is possible that
dx

clx- dx
(19)

has a solution of the form e'"^. (Note m is a con-

stant such as A and B are constants.) Thus, we

try y=e"'-^ as a solution of (19) and obtain

ffi^ginx + /ime"'-^ + Be'"^ = 0.

Since e'"'^ # we may divide it out and obtain the

quadratic equation for m of

m^ + Am + B = 0. (20)

This equation is called the AUXILIARY EQUATION.

Solving (20) for m we obtain:

m = ;^
(20A)

If we denote the two roots of (20) by mi and m2,

then e'"i-^ and e"'2-^ are solutions of equation (19).

The general solution of (19) in this case is then

y=Cie'"i-^ + C2e"'2'. (21)

The reason for this is that if equation (21) is true

then the differential equation resulting by elimina-

tion of C\ and C2 will, in fact, be a second order

linear differential equation as shown in equation (19).

In order that (21) be the general solution, rui

must not equal m-z. But if the two roots of (20) are

equal {mi = m-2 = m), direct substitution of y= ;ce'"-'

into (19) shows that it is a solution. For,

if

then
y= xe"'-'

y' — xme'"-^ + e'"''

y ' = jcm^e'"-^ + 2me"

and substituting y, y', y" in the differential equation

(19) gives

y" +Ay'+By

= xm^e""^ + 2me'"^ + Ax me""'

+ Ae-"-^ + Bxe"""

= e'«-^[jt(m- + Am+B) + r2m+A}]=0.

The quantity {ni^ + Am + B) is equal to zero for m
is a root of the auxiliary equation (20) and 2m -1-^=0

A ^
because m= -^ from equation (20A) when mi = m-z

= mand V^2_45 = o.

Therefore if mi = m2 = m the general solution of

equation (19) is

y= €,€"•' + C2xe" (22)

Example 10-4.

Find the general solution of y' — y'— 2y=0.

Comparing this equation with (19) A=—l and

B =— 2. Substituting these values in auxiliary

equation (20):

m- — m — 2 =

Solve this quadratic in accordance with (20A):

-(-l)±V(-l)2-4(-2)
2

1±3 = + 2and-l

assume mi =+ 2, m-i =— 1 and to obtain the general

solution substitute these values in (21) since

mi ^ mz:

y= Cie^-^ + C>e~^ Answer.

Example 10-5.

Find the general solution of y" + 6y' + 9y= 0.

Using equation (20), the auxihary equation is

m- + 6m + 9 =

and mi=— 3 = m2 = — 3 = m. Thus, from equation

(22) the general solution is

y=C\e~^^ + C2xe~^^ Answer.
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Exercise 10-3.

Find the general solutions of the following:

1. /-2y'-3y=0
2. y' + 4y'+4y=

3. / = 9y

10-5. Applications

Due to our limited study of differential equations

only a few direct applications will be discussed.

Although this chapter is intended to give the

student only a limited background in differential

equations it is hoped the selected examples will en-

courage him to seek further study in the subject.

We will now proceed to the discussion of dif-

ferential equations as applied to electrical circuits.

This is best done by giving examples.

From previous study it is known that the current

dE
I through a capacitor is equal to C —r- where C is

at

the capacitance and E{t) is the voltage across the

capacitor. Similarly, the current through a resistor

E{t)
R is equal to —5- and the current through an inductor

A

L is equal to y I E(t)dt. The algebraic sum of all

currents at a junction (node) must be equal to zero.

Due to this relation we arrive at a node equation

representing this sum. The following examples

will show this relation and also the apphcation of

differential equations to electrical circuits.

Example 10-6.

What is the equation for the voltage across the

resistor at ( > when the initial voltage across the

capacitor is 10 volts and the initial current (/o)

through the inductor is 50 amps (fig. 10-1). We
know that

lc{t)=-CdEU)ldt

l,.{t) =-A EH)dt

At f = 0, Idt) = /o = - 50 amps.

Thus, we arrive at the node equation:

/c(0 + /«(0 + //.(/) =

Differentiate each term with respect to t:

^ dT'Eit) 1 dEit)
,
Eit) ^

^ dt^ ^R dt ^ L
~^

Divide by C:

d'E(t) 1 dE(t) E(t)_

dt^ RC dt LC

(23A)

(23B)

(23C)

This equation is a homogeneous linear differen-

tial equation like equation (19), section 10-4, with

constant coefficients. Thus, the auxiliary equation

'"'+^'"+ZZ=*^

J_
RC RC] LC

2

Substituting the given values for R, C, and L into

the above equation yields

lOV

4^ C = ^ FARAD

L=22 HENRY

Io=50AMPS.

E,(t)

Figure 10-1.—Example 10-6.
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A CIRCUIT

B EQUIVALENT CIRCUIT AT t =

Eft)

C WAVEFORM OF VOLTAGE

Fisure 10-2.—Example 10-7.

R = 5rL



MATHEMATICS, VOLUME 3

Knowing the algebraic sum of the currents at a node

E(t)
must be equal to zero and knowing //((/)

=-^ and

Ic{t) = C—:;— , we have the node equation:
at

Em+cdm=o
R dt

Muhiply by dt and divide by CE(t) to separate the

variables (chapter 10, section 3).

dE(t)_ 1

E(t) RC
dt (26)

Integrate: fdm^f
J m J RC

dt

InE(t) —^ + lnC,

(Ci is an arbitrary constant of integration.)

Thus the general solution of equation (26) is

E{t) = Cie~T^ (27)

Solving for Ci we know al t = that E{t) = Eo = 'i

volts. Thus from equation (27) at t = 0, Ci = 4

volts. Therefore, the particular solution of equa-

tion (26) is:

£(<) = 4e ''^ or from figure 10-2B:

E{t) = 4e~^

The graph of the equation is illustrated in fig. 10-2C.

Example 10-8.

Knowing that i = -p where i equals the current
dt

and q equals the charge on the capacitor, write the

circuit equation for the circuit in figure 10-3.

It is assumed that the student realizes that the

sum of the voltages across all elements in the

circuit must be equal to zero. Knowing that the

voltage across the resistor is R—r , across the induc-^
dt

tor is L-r^ , and across the capacitor is -p; q the cir-
dt^ C

cuit equation is as follows:

Eit) = L^,+R^+lqAns.
dt- dt L

El -(f)

SOURCE QV) Ejt)^C

Ejf)

WW
R

Fisure 10-3.—Circuit for example 10-8.

We shall now briefly discuss mechanical systems

with reference to differential equations.

Figure 10-4 shows a particle of mass (m) attached

to a weightless spring. This mass is subjected to a

force which we denote by F(t). The force acts in

the X direction causing the mass to move in this

direction and the spring to expand. The unstretched

spring positions the mass at jc= and the spring force

is proportional to the displacement x (Hooks Law)

and has a value of x multiphed by "/:" which is

termed the spring constant.

If there is a frictional force retarding the motion

of the mass, it will be proportional to the velocity of

the mass. The constant of proportionality will be

designated as "f.

Thus, in accordance with Newton's laws, the

forcing function may be represented mathematically

by the following differential equation:

F[t) = m^,+ i^ + kx
dt^ dt

d^x.
where -7-^ is equal to the acceleration of mass m.

This equation is similar to one that we have de-

rived before. Compare this equation to the answer

given for Example 10-8.

wwwwww

x = o
^

Figure 10—4.—Mechanical system analogous to a series LCR
circuit.
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Notice that the forcing function, F(t), is similar

to E{t). Also notice that the charge iq) on the capac-

itor is similar to displacement ix), that m corre-

sponds to L, that f corresponds to R, and that k

corresponds to -r;

The analogy between mechanical systems and

electrical systems has given us a very helpful

tool. That tool is the solving of mechanical prob-

lems by use of electrical circuits and components.

It is thus evident that certain electrical compo-

nents put in a prescribed circuit could perform

certain mathematical operations including the

solving of differential equations. We shall now
describe a few of these circuits and components.

These circuits and components are used in most

analog computers. The mathematical applications

will be emphasized.

The basic element of most electronic analog

computers is a high-gain d-c ampHfier. This ele-

ment is combined with other elements to perform

a specific mathematical operation.

A conventional single line diagram of a high-gain

ampHfier is given in figure 10-5. The input voltage

is represented by e,- and the output voltage is rep-

resented by Co.

r-AAAAAAAr

i-^WW\AAr

Figure 10-6.—A constant multiplier.

The ratio n^ is a constant multipher. When a high

resistance resistor and a low-loss capacitor (0.1-

2 /xfd.) are connected to a high-gain ampHfier as

shown in figure 10-7, the relationship between e,

and Co is approximated by the expression.

\RC^
eMdt + K

Figure 10-5.—Conventional symbol of high-gain amplifier.

where K is the initial value of €„ reaHzed by the

initial charge on the capacitor. The above expres-

sion is an integration multipHed by the constant

The multipHcation of a voltage by a constant less

than unity is usually performed by an attenuator

consisting of a precision potentiometer. The volt-

The operation performed by the high-gain ampli-

fier is represented by the equation

Co = — Aci

where A \s a positive constant representing the gain

for the amplifier. The minus sign indicates 180°

phase shift between Co and e,.

When sufficiently large resistances (100k — 10

meg.) are introduced as shown in figure 10-6, the

relationship between e,- and Co is approximated by

the expression

eo = -{^)e,

e.-^VWVWV

Figure 10-7.—The integrator.
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age, eo, of the potentiometer is set to three-place

accuracy by servomechanical or manual means.

The circuit diagram and schematic are given in

figure 10-8. The relationship between a and Co is

Co = aei where a < \.

Figure 10-9 shows some of the common relation-

ships between e, and ?» and their schematic dia-

grams.

Let us now look at some example problems which

will show the student some uses of analog devices

in solving problems.

e,o- e -oen

Fisure 10-8.—Circuit and schematic of a potentiometer.

NEGATION: 6/

NEGATIVE SUMMATION:

eo = -(ei-te2 + e^^e^+e^)

NEGATIVE INTEGRATION. Bj

'o = - ej(t)dt+K
h

COMBINATION OF SUMMATION AND MULTIPLICATION

eo--(e, ^lOo +100^J'62 ---J'

Figure 10-9.—Relation between e, and Co.
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STEP I STEP 2 STEP 3

Figure 10-10.—Example 10-9.

Example 10-9.

Show the operational schematic of the expression

y = 7.3a:. Let x = e,- in figure 10-10.

The first step uses a potentiometer to multiply e,

by 0.73 giving an output voltage of 0.73a.

The second step uses a high-gain amplifier with a

D
constant multipher ol -5- = 10 giving an output voh-

R,

c df -^K

-C dfi-K OUT OF
INTEGRATOR

O INITIAL CONDITIONS
ON CAPACITOR PUT IN

age of — 7.3x. Figure 10-1 1 .—Example 10-10.

O +S

Figure 10-12.—Operation schematic for solving

157

''"''+'f.T!+/<.s=o.
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The third step uses a high-gain amphfier with a

constant multiplier of -5^= 1, giving a negation opera-

tion. Thus the output voltage is 7.3x which is the

desired operation.

Example 10-10.

Solve the first order differential equation —r = C
dt

where C is a constant.

The equation may b

dx = C I dt + K where K\d. = c\

arranged in this order,

the initial condition

constant. The schematic is shown in fig. 10-11.

Many physical systems are described by the fol-

lowing differential equation, i.e., they have the same
mathematical model (A^i and ^^2 are constants):

at'' at
= (28)

The method of solving this equation is representa-

tive of the approach used in electronic analog com-

puters. The approach is a unique one. Note that

by rearranging equation (28) we can represent the

second derivative term as equal to the negative sum
of the other two terms. Why not do this electroni-

cally? This concept is illustrated in figure 10-12.

At first glance the circuit shown is puzzling.

What is the input voltage? The answer to this

cpiestion is related to the components shown within

the dashed lines. Consider for a moment, the

equation that we have mechanized. What does it

represent? The equation we have mechanized

represents any oscillating system being damped by

friction (figure 10-4 for example). When left

undisturbed, a mass on a spring, pendulum, or

ringing circuit will not do anything. Displace it,

strike it, or pulse it and the system will oscillate

until it is completely damped out. The components

in the dashed boxes represent the elements of a

disturbance. The IC potentiometer supplies a

voltage to the output of the second integrator.

Since the output of the second integrator represents

displacement, the IC voltage represents an "initial

condition" (IC) corresponding to initial displacement

of a mass on a spring, pendulum, or the amplitude of

a pulse applied to a ringing circuit. The IC volt-

age charges the feedback capacitor of the second

integrator. Closing the start switch applies the

disturbance. Electronically it pulses the computer

circuits. As a result, the signal passes through a

gain of— ^L2 and is integrated by integrator number 1.

A portion of the output signal is fed back through an

attenuation of K\ (we assumed that ^1 is less than

unity). Consequently, the circuit starts operating.

Remember that the voltages applied to integrator

d}s
number 1 are equal to -r-r • As a result, the two in-

at'

tegrators produce the solution to the differential

equation noted as the output + s in figure 10-12.
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APPENDIX II

ANSWERS TO EXERCISES

CHAPTER 1

Exercise 1 -1

A. 63

B. 12,144

C. 11

D. 1260

Exercise 1-2

a. .t=18, y= 6

58 23
b. x = T^ , y=

43 43

c. x= 12, y= —

3

d. x = — 5, y=3, 2 = 2

CHAPTER 5

Exercise 5-1

1 1



Appendix II -ANSWERS TO EXERCISES

CHAPTER 6

Exercise 6-1

1. 6 sin^ 2a; cos 2j:

ginx

2. —
3.

\Vl-;t2
+ sin"' X

4. InlQisec^x^Q'""'

5. 12sin5 2jccos«2a:-10sin^2a:cos-'2A:

6. ef'-^ + le^'+ ee + cost

7. 3 tan 3a:

x-(x^l6)

i

9. -;
9 + x^

10. fV(2< + 3)

Exercise 7-1

1. ^+ 6^ + C

2 —+—+—+r
2 3 4^

CHAPTER 7

.f.c

4. 8V2a:+1 + C

+c

Exercise 7-2

2lnK
+ C

2. sin|- + C

3. r^ /n (at;2 -|. i) C
za

4.
j2 +^

5. A;2-12A; = 4/n(A; + 2) + C

Exercise 7-2 — (Continued)

6. e""' + C

7. -|cot (a:2-1) + C

8. e^'-'-^ + C

Exercise 7-3

1. 2 /«(sec2A: + tan2A:) + C

2. 2 sin '

-j^ + C

3. - In (sin 202) + C

cos^ 2a: cos^ 2a:

l'"-(^) +c

6. — In sec 3a:^ + C

or - /n cos 3a:^ + C

cos 4a: cos 3a: „
'

8
6~^^

cos* 2a:

16
-+C

X sin 12x sin^ 6x

16 192 144

10. - arc sin — \-

C

(rule 16)

(rule 18)

(rule 15)

(rule 4)

(rule 19)

(rule 14)

(formula D)

(rule 4)

C (formula A and B)

(rule 18)

CHAPTER 8

Exercise 8-1

1. a: sin + cos a: + C

\/4 — a:^

2. - \ +C

3. In

4a:

t{t-2)

{t + W
e''-^{b sin nx — n cos nx)

b^ + n^

(by parts)

(by trigonometric

substitution)

(by partial fractions)

C (by parts)

161



MATHEMATICS, VOLUME 3

CHAPTER 8 -(Continued)

Exercise 8-1 —(Continued)

5. i^{x-4.}-Cix + 8) + C
15

9,.-9)-
-+C

(by algebraic

substitution)

(by trigonometric

substitution)

Exercise 8-2

1. 4 square units

^ 32V3
Z. —-— square units

3. -(TT — 2) square units

CHAPTER 9

Exercise 9-1

1. Convergent for
\
x

\
/L 2

2. Convergent for
|
j:

|
Z 1

3. Convergent for
|
x

|
Z. 1

Exercise 9-2

1. e-^=l+x + ^-+
f^+.

.

2. tanx = x + |^ +^+. .

Exercise 9-3

1. /«. = /na + l(.-a)-'^ +<^
a la'- 3a^

2. cos a: = cos a — (x — a) sin a

(x — af cos a

2!

(x — a)^ sin a+.

CHAPTER 10

Exercise 10-1

1

.

x'" = Cy'^ or x" = Cy"

2. sin y=C cos X

3. yln C{\ -x) = 1

Exercise 10-2

1. 2y= x-' + Cx-

2. ysinx = x + C
3. 9y= 3x-l+Ce-3-^

Exercise 10-3

1. y=C,e3-^+ C2e--^

2. y=C,e-2-^ + C2xe-2-^

3. y= C,e3-^ + C2e--''
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INDEX

Abbreviations and symbols, 159

Acceleration in circular motion, 99

Addition, computer techniques, 11, 17

Abbreviations and symbols, 159

Algebra, Boolean, 19-36

AND operations, 21

application to switching circuits, 21

axiomatic expressions of, 27, 33

classes and elements, 19

fundamental laws of, 28-32

given truth table, 33

minterm-maxterm conversion, 27

NAND operation, 26

NOR operation, 25

NOT operation, 24

OR operation, 22

simplification techniques and applications, 37-61

apphcation of basic laws and axiomatic expressions, 38

logic diagram mechanization, 46

Veitch diagrams, 34—36, 39

Venn diagram. 19

Algebraic functions, differentiation of, 49-81

average and instantaneous rates of change. 55

capacitor current, 78

circuit devices, 76-78

continuity, 53

critical points, maximum and minimum, 63—72

curvilinear motion, 72-74

differentials, 78-81

differentiation, 60

functional meaning and notation, 49

geometric interpretation of the derivative, 61-63

increments, 54

indeterminant forms, procedures for calculating, 51

infinitesimals, 52

infinity, meaning of, 51

rectihnear motion, 70-72

related problems, 74^76

theorems for differentiating algebraic functions, 56

Algebraic substitution, integration by, 120

Amplifier, high-gain, conventional symbol of, 155

Analytic geometry, 3

AND operation, 21

Angles, trigonometric functions of, 213

Arithmetic, 141

progression, 141

series, 141

Auxiliary equations, 150

Axiomatic expressions, 27

of Boolean algebra, 33

Binary addition, 1

1

Boolean algebra, 19-61

AND operations, 21

application to switching circuits, 21

axiomatic expressions of, 27, 33

classes and elements, 19

fundamental laws of, 28-32

given truth table, 33

minterm-maxterm conversion, 27

NAND operation, 26

NOR operation, 25

NOT operation, 24

OR operation, 22

simpbfication techniques and applications, 37-61

appbcation of basic laws and axiomatic expressions, 38

logic diagram mechanism, 46

Veitch diagrams, 34^36, 39

Venn diagram, 19

Capacitor current, 78

Circuit and schematic of a potentiometer, 156

Circular motion

acceleration in, 99

velocity in, 97

Combinations and permutations, 5

Common difference, 141

Common ratio, 141

Computer technique of addition, 17

Constant of integration, 106

Conventional symbol of high-gain amplifier, 155

Convergent series, 142, 143

Conversion, minterm-maxterm, 27

Converting from rectangula;' to polar coordinate, 95

Coordinates, determining areas in, 128-136

polar, 133-136

rectangular, 128-133

Critical points, maximum and minimum, 63

Curvihnear motion, 72

Decimal addition, 11

Decimal .nultiplicalion, 14

Definite integral, 108

De Morgan's theorem, 38

Determinants, 6

Differential equations, 147-162

apphcations, 151-158

circuit and schematic of a potentiometer, 156

constant multiplier, 155

conventional symbol of high-gain amplifier. 155

definitions, 147
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Differential equations — (Continued)

homogeneous linear differential equations with constant

coefficients, 149-151

integrator, 155

mechanical system analogous to a series LCR circuit, 154

of the first order and degree, 148

ordinary, 147

partial, 147

solutions of, 147

variables, 148

Differentiation of algebraic functions, 49-61

average and instantaneous rates of change, 55

capacitor current. 78

circuit devices, 76-78

continuity, 53

critical points, maximum and minimum, 63-72

curvihnear motion, 72-74

differentials, 78-81

differentiation, 60

functional meaning and notation, 49

geometric interpretation of the derivative. 61-63

increments, 54

indeterminant forms, procedures for calculating, 51

infinitesimals, 52

infinity, meaning of, 51

rectilinear motion, 70-72

related problems, 74^76

theorems for differentiating algebraic functions, 56

Differentiation of transcendental functions, 82-104

circular motion, 97—100

converting from rectangular to polar coordinates, 95

exponential functions, 86-90

differentiation of, 94

harmonic motion, 100-102

inverse trigonometric forms, derivations of, 90-93

L'Hospital's rule, 102-104

trigonometric functions, 82-85

Divergent series, 142, 143

Division, 15

Duodecimal muUiplication, 14

Equations, 1

Equations, auxiUary, 150

Equations, differential, 147-162

applications, 151-158

circuit and schematic of a potentiometer. 156

constant multipher, 155

conventional symbol of high-gain amplifier, 155

definitions, 147

homogeneous hnear differential equations with constant

coefficients, 149-151

integrator, 155

mechanical system ansdogous to a series LCR circuit, 154

of the first order and degree, 148

ordinary, 147

partial, 147

solutions of, 147

Equations, quadratic, 2

Exponential functions, 86-90

Factoring, 2

Formulas, 1-7

transcendental functions, 86

Functional meaning and notation, 49

Geometric interpretation of the derivative, 62

Geometric progression, 141

Geometry, analytic, 3

Given truth table, 33

Graphs of trigonometric functions, 82-85

Harmonic motion, 100-102

High-gain amphfier, conventional symbol of, 155

Homogeneous linear differential equations with con

coefficients, 149-151

Implicit differentiation of algebraic functions, 60

Improper integrals, 125-128

Increments of variables, 54

Indeterminant forms, 51

Inequahlies, 4

Infinite series, 141

Infinitesimals, 52

Infinity, 51

Integral, definition of, 105, 106

Integrand, 106

Integrating factor, 148

Integration, 105-117

definite integral, 108-110

definition of the integral, 105—107

derivatives of the rules, 110-115

evaluation of the constant of integration, 107

integrating powers of trigonometric functions. 116

Integration techniques. 118-140

by algebraic substitution, 120

by parts, 118-120

by Simpson's rule. 139

by the trapezoidal rule. 138

by trigonometric substitution. 121-123

by use of partial fraction, 123—125

determining areas in polar coordinates, 133-136

determining areas in rectangular coordinates, 128-133

improper integrals, 125-128

mechanical integration, 139

R—L and R—C circuits, 137

Inverse trigonometric forms, derivations of, 90-93

L'Hospital's rule, 102-104

Logarithmic expressions, 3

Logic diagram mechanization, 46

MacLaurin's series, 145

Mathematical symbols and abbreviations, 159

Mechanical integration, 139

Mechanical system analogous to a series LCR circuit, 154

Minterm-maxterm conversion, 27

Multiplication, 14

NAND operation, 25

NOR operation, 25
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NOT operation, 24

Number systems, 8-18

addition, 11

computer technique, 17

conversions, 16

converting between number systems, 10

cyclic action of odometer, 9

division, 15

multiplication, 15

positional value and counting, 8

subtraction, 12

ternary system, 8-11

Octal addition, 11

Octad multiplication, 14

Odometer, 8

Ordinary differential equations, 147

OR operation, 22

Over-and-over subtraction, 15

Partial differential equations, 147

Partial fractions, integration by, 123—125

Permutations, 5

Polar coordinates, 95

determining areas in, 133—136

Polynomial expansion, 2

Potentiometer, circuit and schematic of, 157

Power series, 144

Principal diagonal, 6

Quadratic equations, 2

Radial acceleration, 98

Radix geometric progression, 9

Reciprocal multiplication, 16

Rectangular coordinates, determining areas in, 128-133

Rectilinear motion, 70-72

Right circle cone, 75

R-L and R-C circuits, 137

Rules for differentiating algebraic functions, 56

Rules for integrating by algebraic substitution, 120

Rules for integrating standard forms, 109

Series, 141-146

convergent series for comparison, 142

definitions, 141

divergent series for comparison, 142

MacLaurin's series, 145

power series, 144

properties, 141-143

Taylor's series, 146

Series LCR circuit, mechanical system analogous to, 154

Simpson's rule, integrated by, 139

Standard forms, 109

Subtraction, 13

Summation notation, 5

Symbol of high-gain amplifier, 155

Symbols and abbreviations, 159

Tangential acceleration, 98

Taylor's series, 146

Ternary system, 8-11

Theorems, 4

for differentiating algebraic functions, 56

Toroid, 104

Transcendental functions, differentiation of, 82-104

circular motion, 97-100

converting from rectangular to polar coordinates, 95

exponential functions, 86-90

differentiation of, 94

harmonic motion, 100-102

inverse trigonometric forms, derivations of, 90-93

L'Hospital's rule, 102-104

trigonometric functions, 82-95

Trapezoidal rule, integration by, 138

Ternary system, 8-11

Trigonometric forms, inverse derivations of, 90-93

Trigonometric functions, 2

graphs of, 82-85

Trigonometric substitution, integration by, 121—123

Variables and functions, algebraic, 50

Veitch diagrams, 34-36

Velocity in circular motion, 97

Venn diagrams, 19

For sale by ihe Supenntendenl of Documents. U.S. Covernmenl Printing Office. W ashington. D.C.. 20402 - Price »1 00

165












